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1 Introduction 
This paper analyses the forgetting factor recursive least squares filter (ρRLS) and the (kernel) least means squares ( KLMS 

and LMS), all being supervised machine learning algorithms and part of the adaptive finite impulse response (FIR) filters 

(AF) class. They compare one unprocessed and one processed signal (supervised learning) and determine in real time 

(fitting, adapting) the equivalent FIR system responsible for the perceived changes. The notion of equivalent FIR system 

is important, as the system to be fitted isn’t necessarily a FIR, or even linear, in which case, an FIR creating a similar output 

least squared-wise is fitted. 

Like all machine learning algorithms, the fitting models have (model-) parameters, hyper-parameters and goodness of fit 

metrics. The only model-parameters of the ρRLS and LMS filters are the weights fitting the desired system, of which there 

are as many as filter taps, which is the filter’s order +1 (Moschytz & Hofbauer, 2000). The KLMS algorithm stores directly 

a selection of representative inputs as centers and weighting coefficients (Liu, Príncipe, & Haykin, 2010). The number of 

coefficients is reduced by heuristics but are not directly under control and don’t correspond to the impulse response of 

the equivalent FIR system.  

The hyper-parameters, whose optimal settings this paper is concerned about, are different for each filter type and depend 

strongly on the filter’s operation environment, as will be further investigated. Common hyper-parameters of the ρRLS 

and LMS are the filter order, while the LMS and KLMS both require choosing a step-size. The ρRLS also requires setting 

the forgetting factor ρ and an initialization value of the scalar matrix. The LMS has no further hyper-parameters, while 

the KLMS’s further parameters depend on its type (Kernel function, dictionary sparsification heuristic, etc). 

All three filters can be evaluated with the same goodness of fit measures. Convergence speed and accuracy, as well as 

oscillation tendencies are analyzed with the mean squared error (MSE) and the momentary absolute prediction error 

(APE). For further intuition, the filter output will be graphically compared to the desired output. Furthermore, the ρRLS 

and LMS allow direct comparison to the desired weights if the system to be emulated is known, as is the case for some 

systems in this test series. 

Section 2 comments the implementation of the filters and the related tests, while section 3 discusses properties and 

parameter choices common to all performed tests. Section 4 and section 5 focus on the fitting of IIR and FIR systems in 

respectively stationary and non-stationary noisy environments. Section 6 compares the LMS’s and KLMS’s prediction 

capacity of single variable time series, while section 7 and section 8 conclude with methodology critique and further work. 

2 Implementation 

2.1 Grid search 
A grid search function was implemented to construct and evaluate mesh-grids of hyper-parameter values and determine 

the best combination based on the resulting MSE values. In addition, the function plots all resulting MSE and outputs a 

table containing the test results (Filter-type, Hyper-parameter combinations, final MSE) and a dictionary to be directly 

unpacked into the constructor of the tested filter class. Furthermore, to perform hyper-parameter searches for prediction 

filters, a “future” variable allows to arbitrarily delay the signal. To decrease the KLMS’s high overfitting risk, grid search 

offers the possibility of using test-signal prediction MSE values rather than the input or desired signal training ones. 

2.2 Filter classes 

2.2.1 Adaptive filter superclass 
The main content of the adaptive filter library is the abstract super-class “adaptive filter” from which all filter types inherit 

most of their functionality. In a classical OOP approach, all common procedures like printing the common parameters 

and getter functions for numbers of taps and weights are handled by the abstract super class. It has no constructor as no 

variables are common between all filters and some methods are abstract to force all subclasses to overwrite them. It 

implements the two main filter functions adapt() and filter(), as the general procedures are the same for respectively all 

and most filters. 

The adapt() function, adapting the filter to the given system, while also providing graphical representation and outputting 

relevant data, differs almost only by subtype-polymorphism of the filter-dependent iteration() function. Furthermore, 

the MSE computation was implemented manually in a vectorized fashion that outperforms the sklearn library. 

The filter() function applies the adapted filters by either calling a built-in LTI-filter application function for the LMS and 

ρRLS or using the KLMS filter output formula. 
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2.2.2 LMS 
The LMS class implements a constructor, which, after input validity verifications, sets the passed step size µ, being the 

single hyper-parameter, in addition to initializing the weights vector with zeros. A print function overloads the superclass’ 

print() function and the iteration() function follows the pseudo code delivered by Moschytz and Hofbauer (2000). All 

other functions are provided by the superclass adaptive filters. 

An auxiliary function LMSconverge() makes convergence predictions based on input signal power and filer order, based 

on Moschytz and Hofbauer (2000). The function is to be executed before constructing the filter or performing the grid-

search to gain insight of the maximal converging step-size. If a specific step-size is given, the function predicts if the filter 

converges and the convergence time. 

2.2.3 ρRLS 
Similarly to the LMS class, the ρRLS class only implements a constructor and its own iteration() function from Moschytz 

and Hofbauer (2000) and overloads the print function, while taking all other functionality from the superclass. The 

constructor sets after verification the two ρRLS hyper-parameter being the forgetting factor ρ and the recursive 

autocorrelation matrix ℛ𝑘’s initialization parameter 𝑎 for the initialization as ℛ0 ≔ 𝑎 ⋅ 𝐼𝑁 with 𝑁 being the number of 

filter taps. Similarly to the LMS class, the constructor initializes the weights vector with zeros. 

2.2.4 KLMS 
The KLMS algorithm with Platt’s novelty criterion and gaussian kernel was designed from the pseudo-code provided by 

Liu, Príncipe and Haykin (2010). As for both previously discussed classes, the KLMS class implements only a constructor 

and its specific iteration() function and overloads the print function. The filter output function “f()” was separated from 

the iteration() procedure, being also used by the filter() function. 

The high algorithm complexity motivates aggressive optimization, thus all weighted sums were changed to scalar 

products, as vectorized operations are 3-4 orders of magnitude faster than sequential for-loop iterations. To illustrate, 

∑ 𝑎𝑖−1[𝑗] 𝐾(�̲�[𝑖], 𝒞𝑖−1[𝑗])𝑖−1
𝑗=0  becomes ⟨𝑎𝑖−1; 𝐾(�̲�[𝑖], 𝒞𝑖−1)⟩, were 𝑎𝑖−1 is the weight vector and 𝒞𝑖−1 the center vector at 

iteration 𝑖. The gaussian kernel function was also vectorized, such that matrix-vector operations are performed rather 

than sequential elementwise application, also accelerating the operation by several magnitude orders. 

Platt’s novelty criterion was implemented for dictionary size sparsification and reducing model overfitting. Both 

thresholds (minimum distance and minimum error) were set to be variables passable to the constructor, allowing grid-

search optimization. 

To reduce the number of necessary procedures, the constructor initializes the centers and coefficient vector with zeros, 

having no effect in the sum and thus not falsifying the computations. After model fitting, these initialization values are 

deleted from the center (𝒞)and coefficient (𝑎) lists. 

This KLMS implementation has 5 hyper-parameters. Those are the step-size as for the LMS, the kernel size regulating the 

fitted gaussian distributions’ width, the window-size being equivalent to regular FIR filters’ tap amount and both novelty 

criterion thresholds, respectively controlling the minimum distance and error necessary to be added to be dictionary. 
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3 General tests 
This section tests parameters and properties independent of the environment stationarity and the FIR or IIR characteristic 

of the emulated system. 

3.1  LMS: Step-size related to order  
To gain insight in the general dependence of the required step-size to the filter order, an arbitrary step-size list was tested 

for orders 0,1 and 4 ( = 1,2,5 filter taps respectively) on different systems and additive noise variances. 

The adjacent table shows a test results extract for the mapping of the provided 

FIR system with different filter orders in a stationary environment with an 

additive noise variance of 0.001, resulting in a total signal power of 0.986. The 

step-sizes resulting in the minimal MSE for the respective orders are marked in 

bold. 

The first observation is that step-sizes over a certain value either diverge as 

seen from the ∞  in the table or result in great MSE values and thus bad 

approximations of the desired system. Furthermore, increasing the number of 

taps reduces the maximal step-size as already formalized by Moschytz and 

Hofbauer (2000) in  0 < 𝜇 < 𝜇max =
2

𝑡𝑟(𝑅)
=

2

𝑁⋅𝔼{|𝑥[𝑘]|2}
 with 𝔼{|𝑥[𝑘]|2} being 

the input power, 𝑁 the number of filter taps and 𝑅 the signal’s autocorrelation 

matrix. 

Furthermore, the step-size µ relation to the MSE behaves in a convex way 

(Moschytz & Hofbauer, 2000). Too large step-sizes don’t attain the minimum of the hyper-parabolic error surface, as the 

weights keep oscillating around the minimum (ibid.), while too small step-sizes don’t converge fast enough to reach a 

minimum before the training signal ends. 

The above Table also hints that greater orders of LMS provide better approximations. The relation with the MSE and the 

noise influence are respectively discussed in each chapters’ noise resistance section. 

3.2  LMS: Step-size related to additive noise variance 
The grid-searches calculated for the previous section were used to test if the additive noise variance has an influence on 

the step-size but no such relationship was discovered. If the noise doesn’t significantly increase the input power, which 

requires a reduction of the step-size as noted above, the step-size remains unaffected by this study’s findings. Further, 

more intricate tests could however reveal some relationship, being however outside this paper’s scope. 

3.3  RLS: Initial scalar matrix value 
The ρRLS algorithm requires initializing the recursive autocorrelation matrix ℛ𝑘. The common choice is a scalar matrix 

(ℛ0 ≔ 𝑎 ⋅ 𝐼𝑁)  having the useful property of being full rank, necessary for its inversion by the algorithm (Moschytz & 

Hofbauer, 2000) (Haykin, 2014). Moschytz and Hofbauer (2000) propose the use of an arbitrary large number, while 

Haykin (2014) proposes an initialization based on the signal to noise ratio (SNR). This section proposes a thorough test on 

the various influences the initial value 𝑎 has on the convergence behavior of the ρRLS algorithm. 

Haykin (2014) proposed that higher SNR required large positive numbers while low SNR data best converges with small 

initialization values. In this test series, the signal to noise ratio is directly influenced by the amplitude/variance of the 

noise signal added to the input signal. To illustrate, the signal with the added noise variance of 10 has a very low signal 

to noise ratio and is expected to require a small-valued initialization.  

This study’s results confirm Haykin’s (2014) findings in general trends since no exact optimum initialization values were 

computed. 

The grid search is composed of a base 2 logarithmically spaced 50 number series in [𝑒 − 06; 𝑒 + 05] with additionally a 

linearly spaced 20-number series of ρ values and the four noise levels and four tested systems resulting in 50 ⋅ 20 ⋅ 4 ⋅

4 = 8′000 fitted filters. This data amount couldn’t be displayed or added to a reasonably sized annex, thus only the 

results and selected plots will be presented. The exact results are available in the datafiles provided with the paper. 

The result showed that the correct initialization has more beneficial effect on the MSE for higher order filters (here 5 

taps) than for lower order filters. Furthermore, more difference was observed for better signal to noise ratio or input 

power, which are indiscernible by this test series, requiring further tests varying the input level in addition to the noise 

level. A correct initialization also has beneficial influences on the convergence speed as illustrated in the below figure. 

Step 
size µ 

1 tap 
MSE 

2 taps 
MSE 

5 taps 
MSE 

1 10.7974 ∞ ∞ 

0.5 0.1875 2.1165 ∞ 

0.25 0.1186 0.1333 0.0084 

0.1 0.1062 0.1010 0.0006 

0.05 0.1035 0.0955 0.0008 

0.025 0.1027 0.0936 0.0013 

0.01 0.1036 0.0938 0.0031 

0.005 0.1059 0.0960 0.0060 

0.0025 0.1108 0.1010 0.0120 

0.001 0.1253 0.1157 0.0296 

0.0005 0.1496 0.1405 0.0592 

Table 1: Step-size compared to MSE 
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The maximal observed MSE values were mostly at the opposite end of the optimum initialization value in the grid search. 

To illustrate, the high SNR scenario, optimally initialized with a large 𝑎 has tendentially its minimum at the smallest value 

tested by the grid search (clipping), while the optimum varies strongly. Upon finding these results, the respective grid 

searches for all four provided test inputs were enlarged by 3-4 magnitude orders (for example from 0.01 to e-06), which 

resulted in the same behavior. Thus, one can conclude that while the optimum is asymptotically bounded (see below 

figure), the worst performance isn’t, meaning that the error can become arbitrarily big with a poor initialization. 

Furthermore, an important finding is that the MSE relation to factor 𝑎 in the tested range of [e-06; e+05] is convex, 

meaning that there are no non-global optima as illustrated by the below figure. Thus, a grid search can extend its search 

in the direction reducing MSE values, being guaranteed to reach an optimum and immediately stop when the MSE starts 

rising. The step size can then be reduced to approach the optimum with desired precision. 

The above figure illustrates some of the aforementioned findings, displaying an extract of the static environment FIR’s 

grid search. The filter characteristics are : ρ = 1, 5 taps (order=4), additive noise amplitude NA=1, resulting in Input Power 

=1.99 and the tested values for the initialization parameter 𝑎 are from e-06 to e+05. The grid-searches of the other 

systems and noise levels look similar.  

This graph shows the initialization factor 𝑎 ’s influence on final MSE values and convergence speed. The entries 

corresponding to the highest 𝑎 (right legend list entries) give the worst results in their order of magnitude (1e+05 worse 

than 5.96e+04, etc). This order continues until the red second-column entry 5.179e-02, being the optimum value in this 

test. Smaller values result in a greater MSE, thus an efficient grid search could stop upon encountering 3.089e-02, which 

yields a higher MSE, due to the found convexity relation. 

4 Stationary signals 
The first test series focus on the convergence behavior and estimated filter quality of ρRLS and LMS filters in a stationary 

environment. Stationary means that the signal’s statistical properties are invariant during the entire signal (Moschytz & 

Hofbauer, 2000). In this study, this means that the additive noise level/variance stays the same and that the system to 

fitted by the AFs remains static. 

4.1  Common aspects 
This section describes filter properties common to all applications on stationary signals, irrespective of the system to be 

approximated. Thus, the results of this section count for the following FIR and IIR sections. The used files respectively are 

“FIR” and “IIR”. 

  

Figure 3.1: ρRLS: scalar matrix initialization vs MSE 
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4.1.1 Optimal ρ value for ρRLS 
The forgetting factor ρ’s optimal value is a compromise between convergence speed and tracking ability (Moschytz & 

Hofbauer, 2000). In stationary environments, the best value for ρ is 1, meaning that the filter considers all inputs for the 

autocorrelation matrix estimation ℛ𝑘, without progressively discarding older inputs (ibid.) 

In accordance to Moshytz and Hofbauer (2000) the recursive autocorrelation matrix denoted ℛ𝑘  approximates the input 

signal’s autocorrelation matrix 𝑅, whose precision increases with Dataset size (𝑘):  ℛ𝑘 ≈ 𝑅
1−𝜌𝑘+1

1−𝜌
 and 𝔼{ℛ𝑘} = 𝑅

1−ρ𝑘+1

1−ρ
. 

Thus, having the smallest possible information lost (ρ = 1) increases the filter performance in stationary environments. 

Moshytz and Hofbauer (2000) also predict that the fitting error is 𝑀𝑅𝐿𝑆 ≈
1−𝜌

2
⋅ 𝑁, meaning that a noise-less environment 

and a forgetting factor of 1 can lead to an almost zero fitting error. 

A grid search was conducted over the usual noise variances (0.001, 0.1, 1, 10) and 

number of filter taps (1,2,5) with 20 linearly spaced values between 0.9 and 1 for the 

stationary FIR and IIR systems, resulting in 4 ⋅ 3 ⋅ 20 ⋅ 2 = 480  tested parameter 

combinations. The results confirmed the theoretical assumptions, as every time ρ = 1 

was selected, delivering the lowest MSE. 

The adjacent table is one of the many generated by the grid search, which all display 

a common trend. The tested ρRLS has 5 taps (order 4) and the maximum noise variance 

of 10 was selected with ℛ𝑘 = 10𝑘 ⋅ 𝐼𝑛. The MSE increases by about 0.006 at every 

0.005 decrease in ρ in the beginning and about 0.01 towards the end. Thus, the MSE 

increase grows more than proportionally to the ρ-value decrease. Moreover, an 

expanded grid-search range for ρ indicated that the MSE decreases monotonically, 

indicating a monotonous relationship between ρ and the MSE. 

 

4.2  FIR adaption test 
This section describes the test procedure and results of fitting an FIR system in a stationary environment. All procedures 

are described in detail and the corresponding theorems are provided, while their relation to the test data is explained in 

great detail to set the basics for the identical further tests.  

4.2.1 Filter order impact 

4.2.1.1 LMS 

This section confirms the expectation that a higher order filter being a fitting model with more degrees of freedom 

approximates the given system with higher precision. As noted in section 3, the optimal step-size µ depends amongst 

other factors on the filter order. Thus, to avoid favorizing a particular order with an arbitrarily chosen step-size, a grid-

search decided of the respective optimal step-size. The grid-search consist of 60 logarithmically (base 2) spaced values in 

the order dependent interval [MaxMu/2 ; MaxMu/2048]. No noise was added to the input signal to measure the actual 

unhindered performance of the respective filter orders. 

  

ρ MSE ρ MSE 

1 0.6186 0.9473 0.7007 

0.9947 0.6248 0.9421 0.7099 

0.9894 0.6325 0.9368 0.7191 

0.9842 0.6405 0.9315 0.7285 

0.9789 0.6487 0.9263 0.7380 

0.9736 0.6571 0.9210 0.7476 

0.9684 0.6655 0.9157 0.7573 

0.9631 0.6741 0.9105 0.7672 

0.9578 0.6829 0.9052 0.7771 

0.9526 0.6917 0.9 0.7873 

Table 2: ρ-value compared to MSE 

Figure 4.1: LMS order comparison 
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The above figure displays the asymptotic MSE convergence curves of the LMS Filters of order 0, 1 and 4 ranked by their 

descending order. Higher order filters thus perform better (lower MSE) than their low order counterparts on noiseless 

signals since more taps are available to estimate the system. The MSE values of the filters in ascending order are 

{0.102, 0.093, 5.8𝑒 − 04}. 

Comparing the resulting filter weights of the respective orders ([0.7, 0.1, -0.03, 0.18, -0.24], [0.70216226, 0.07588638] 

and [0.70905876]) shows that the fitted coefficients become gradually noisier as the order diminishes. The 4th order filter 

maps the weights with zero error, while the first and zeroth order filter respectively present an estimation error of 0.002 

and 0.009. 

The left subplot in the above figure displays the 5-tap filter’s adaption process converging after about 10-15 iterations. 

The top subplot compares the filter output to the desired signal, being the unknown filters’ output signal when fed the 

same input as the adaptive filter. Both following subplots display the same information, with the middle one being the 

average of the squares of the bottom one (MSE), being thus less precise. The bottom plot displays well the transient 

nature of the error and thus the convergence speed, while the MSE smears the transient to an asymptotical behavior. 

The absolute prediction error directly influences the weights change rate, as large errors lead to greater weight changes 

and no error leaves the weights untouched. 

The right subplot of the above figure displays the single tap filter adaption process (resembling the 2-tap filter), which 

doesn’t converge to a zero-error state, as the desired filter is of higher order. The top subplot displays the still surprisingly 

good original signal approximation, which might be due to the desired system further coefficients being relatively small 

compared to the first one. The subgraphs below display the MSE, which can also be seen in the above grid search in Figure 

4.1, following the usual asymptotical convergence trend up to 0.1027. The bottom-most subgraph displays the absolute 

prediction error at every iteration, which doesn’t change much after the first 400 iterations. The prediction being different 

than zero means that the filter weight vector oscillates around its current value. The slower convergence is partially due 

to the smaller step-size. 

4.2.1.2 ρRLS 

Similarly to the previous LMS test, this section verifies that higher order ρRLS filters create better approximations. As 

before, to analyze the true fitting capacities of the filter, no additive noise was added to the input signal. Since the filter 

operates in a stationary environment the forgetting factor ρ was set to 1. The factor of the scalar matrix being 

independent of the order and the signal to noise ration being practically infinite (no noise), 10k was taken. 

Moschytz and Hofbauer (2000) propose 

𝑀𝑅𝐿𝑆 ≈
μ0

2
⋅ 𝑁 ⋅ Input power =

1 − ρ

2
⋅ 𝑁 

as fitting error approximation for an ρRLS filter. Thus, in stationary 

environments where ρ = 1 is the optimal forgetting factor, the filter 

error should be around zero. This study’s author assumes that 

Moschytz and Hofbauer restrict their approximation to FIR filters of 

order equal and smaller than the used adaptive filter used in noise-

free environments as none of these variables are contained in the 

approximation. 

  

Figure 4.2: LMS: 5 tap vs 2-tap adaption 

Figure 4.3: ρRLS order comparison 
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As expected, the 4th order filter converges very quickly (5 iterations) and fits the unknown system with almost no error, 

while the lower filter orders take longer to converge and don’t achieve an error free approximation. Similarly to the LMS 

test, the 4th order filter weights remain static after convergence, while the lower order filter’s weight oscillate. The 

resulting MSE values are ranked in descending tap order, with the highest MSE corresponding to the lowest order. The 

5-tap filter achieves an MSE of 5.987e-05, while both other filters achieve respectively 0.1 and 0.09. 

The resulting filter coefficients are respectively [ 0.7, 0.1, -0.03, 0.18, -0.24], [0.7002266 0.1022911] and [0.6997884]. The 

4th order filter approximation is error free, while the lower orders have mostly errors in the e-04 region. 

4.2.2 Noise resistance 

4.2.2.1 LMS 

This section compares the effect the addition of uncorrelated data to the input has on the LMS algorithm’s fitting capacity. 

The added noise variances/amplitudes are {0.001, 0.1, 1, 10} for an input peaking at about 1.2. To mitigate the step-size’s 

(hyper-parameter µ) effect as covariate, a grid-search chose the optimal value for each noise level and filter order. Thus, 

the range between the respective MaxMu/2 and MaxMu/2048 was logarithmically (base 2) divided into 50 steps. The 

following plots display the MSE evolution of respectively order 0, 1 and 4 filters with different noise variances. 

Unsurprisingly, the best MSE values are ranked in ascending noise-amplitude, meaning that the noise amplitude 

negatively affects the overall fitler performance. The additive noise variance also strongly reduces the chosen optimal 

step-size as for all filter orders, which as displayed in the below table, leaves the weights around zero. 

The above illustrations reveals that above a certain noise level, the data is so corrupted that having the minimum 

necessary order to fit the filter makes no difference anymore, as all red curves (noise amplitude NA=10) are identical. 

Those signals don’t converge, which is not surprising considering that the noise signal has an amplitude 10 times higher 

than the input signal, drowning it out. The 0.1 and 0.001 noise signals converge to almost the same MSE, while the NA=1 

signal converges to a higher level. This means that the prediction error isn’t zero and that thus the filter weights oscillate 

around their value rather than converging. 

 

 

 

 

 

 

 

 

 

 

Taps Noise W0 W1 W2 W3 W4 MSE 

  0.7 0.1 -0.03 0.18 -0.24  

1 0.001 0.709134 / / / / 0.10273 

1 0.1 0.696418 / / / / 0.10273 

1 1 0.696418 / / / / 0.10273 

1 10 0.005726 / / / / 0.58 

2 0.001 0.703267 0.073795 / / / 0.09334 

2 0.1 0.688233 0.089681 / / / 0.09824 

2 1 0.354273 0.097480 / / / 0.34299 

2 10 0.007252 0.000102 / / / 0.57776 

5 0.001 0.700126 0.099799 -0.029894 0.17998 -0.240032 0.00058 

5 0.1 0.687523 0.1 -0.038086 0.188539 -0.22779 0.00738 

5 1 0.352613 0.058993 -0.007846 0.096573 -0.121376 0.29306 

5 10 0.006727 0.000905 -0.001825 0.002357 -0.002848 0.57948 

Table 3: static LMS: noise amplitude vs weights and MSE 

Figure 4.4: LMS: noise amplitude vs  filter order 4, 1 and 0 



 

8 

The above table displays the final weight value for each filter order at different noise variances and their final MSE, while 

the top row displays the desired filter values. This table confirms the intuition that higher noise levels result in poorer 

fitting capacities. As noted in previous paragraphs, all filter orders perform equally as poorly at very high noise levels, 

yielding weights being two magnitude orders too small and similar MSE values around 0.58. The NA=1 weights are half 

their correct amplitude for orders 2 and 4. 

As Moschytz and Hofbauer (2000) predicted, higher order filters are more sensitive to noise, having more parameters 

affected by it, as seen from the last column. The 1st order LMS’s MSE remains at 0.103 for the three lowest noise levels, 

while the 4th order LMS jumps from 5.8e-04 to 0.29, being a 505-fold increase. The same effect is visible from the weights 

themselves, as the 1st order LMS remains within e-04 of the minimum-noise fitting while the 4th order LMS quickly 

degenerates from the almost perfect estimation of 0.7001 to 0.3526. 

4.2.2.2 ρRLS 

The noise resistance tests for the ρRLS were performed with 𝜌 = 1, being in a stationary environment. Similarly to the 

LMS, the covariate effect of the scalar matrix initialization was contained by performing a logarithmically (base 2) spaced 

grid-search of 60 parameters from e-06 to e+05. Only the results of the 5-tap filter are plotted, as similarly to the LMS, 

the graphs are identical with slight vertical translations of the lower orders and a static NV=10 curve. 

As expected, noisier signals yield higher MSE values and exhibit a more 

spread out asymptotical transient before stabilizing their trajectories. 

The filter fitted on the NA=10 signal doesn’t converge but fluctuates 

strongly despite the strong smoothing effect of the MSE’s average. This 

means that the absolute prediction error (APE) constantly changes and 

thus the weights fluctuate around their value. The signals with the least 

difference in noise amplitude are close to each other, while the MSE 

with greater amplitude difference are further away, illustrating the 

noise influence on MSE values. 

Furthermore, the scalar matrix initialization’s value diminishes with 

every noise addition amplitude increase, confirming the results of 

section 3, linking it to the signal to noise ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

The above table displays the ρRLS noise resistance depending on its order and the resulting weights and MSE values. As 

expected from the previous plot, the MSE and difference between desired and fitted weight values increase with noise 

amplitude. Noise amplitude 0.001 and 0.1 yield almost perfect results for each order, while NA=1 predicts the weights 

only correctly for the 1st order ρRLS, while both other orders predict half the correct weight. The highest order filter shows 

a 4-fold MSE comparing NA=0.1 to NA=0.001 despite yielding similar weights, which is partially an artefact of the MSE 

computation as explained in section 7. 

Taps Noise W0 W1 W2 W3 W4 MSE 

  0.7 0.1 -0.03 0.18 -0.24  

1 0.001 0.69979 / / / / 0.10066 

1 0.1 0.69264 / / / / 0.10605 

1 1 0.35362 / / / / 0.33862 

1 10 0.00661 / / / / 0.57928 

2 0.001 0.70023 0.10229 / / / 0.09044 

2 0.1 0.69388 0.10087 / / / 0.09503 

2 1 0.69388 0.04760 / / / 0.34319 

2 10 0.00681 0.00170 / / / 0.57887 

5 0.001 0.69984   0.09997 -0.02988 0.17992 -0.2400 0.00599 

5 0.1 0.69358   0.09120 -0.02930   0.19677 -0.2399 0.01965 

5 1 0.36222   0.04678 -0.03783   0.14539 -0.1370 0.40805 

5 10 0.01463   0.01277 -0.01774   0.01564 -0.0041 0.69108 

Table 4: Noise vs weights and MSE 

Figure 4.5: ρRLS: Noise Amplitude vs MSE 
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4.2.2.3 RLS vs LMS 

This section compares both filters performance with each filter having their respective optimal hyper-parameter values 

as explained in both previous sections. Only the 5-tap filter evolution comparison is plotted below, since, as noted in the 

previous sections, their evolutions are similar but with vertically translated low-noise curves and with more stretched out 

asymptotical behavior. 

As illustrated above, the ρRLS filters converge or stabilize faster than their LMS counterparts for every order. The NA=0.1 

ρRLS converges even faster than the NA=0.01 LMS, while both filters fluctuate in an almost identical manner for NA=10 

and NA=1 indicating that the system can’t properly be approximated by neither filter. 

The results tables 3 and 4 show that both filter’s MSE values are very similar to each other for both lowest orders. 

However, the 4th order LMS’s MSE values beat the 4th order ρRLS, even by an entire magnitude order for the lowest noise 

amplitude (NA=0.01). 

Despite the single tap ρRLS’s MSE being higher than its LMS counterpart the final weight’s difference to the reference is 

one magnitude order higher. This result disparity is commented in section 7. The 5 taps (order 4) filter weights are 

generally more precise than their lower order counterparts for both filters. NV=10 yields weights that are 2 magnitude 

orders away from the correct ones (for example 0.0064 for the RLS and 0.0051 for the LMS instead of 0.7), with the RLS 

slightly outperforming the LMS. NV = 1 results in both filters predicting weights that are half the magnitude of the desired 

ones for all orders, with the RLS often being better with a difference in e-03 or e-02. For NV=0.1 both filters approximate 

the filter coefficients with an error in the e-03 range, while the error is mostly in the e-04 range for NV=0.001. 

In conclusion, both filters only produce reliable results for noises being at least a magnitude order lower than the signal 

containing information about the system to be approximated. Furthermore, the ρRLS outperforms the LMS in most cases, 

which might be due to the faster convergence, which, however, becomes marginal for longer signals. 

4.3  IIR adaption test 
This section makes direct filter order and noise resistance comparison between the LMS and ρRLS, since the results are 

almost identical, and the theoretical basis as already presented in the FIR section adaption section. 

4.3.1 IIR system 
Finite impulse response (FIR) filters can per definition only approximate a limited segment of the IIR’s impulse response, 

having a limited number of taps. The lower order filters used for this test series are thus not expect to fit the system 

without error.  

Figure 4.6: LMS vs ρRLS: noise amplitude vs MSE 
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The usual test revealing if a fixed-size FIR approximation is fruitful, takes the 

amplitude decay speed of the IIR system into consideration. If the impulse 

response envelope loses in amplitude, the approximation FIR order can be chosen 

to take the first N samples, where the envelope is above a threshold value. This 

method allows to truncate the IR, while keeping only the most relevant samples 

for the system output. 

The displayed system impulse response is: [1.22, 4.461e-02, 1.632e-03, 5.971e-

05, 2.184e-06, 7.993e-08, 2.924e-09, 1.069e-10]. 

The test IIR system’s impulse response, as displayed in the adjacent figure and the 

vector above, drops very quickly towards zero, while the first sample is about 1.2. 

Thus, an FIR filter of a limited order could approximate it well. However, as mentioned in the introductory section, the 

adaptive filter don’t fit the impulse response of the system but create an equivalent FIR system producing the same 

outputs. 

4.3.2 Filter order impact 
The observations formulated in the general section about the influences of LMS order and noise variance on the step-

size and the ρRLS initialization matrix remain identical, being independent of the system to be fitted. As in section 4.2.1.1, 

a 60-point grid-search based on the maximum µ theorem is performed to avoid favoring a particular filter order with an 

arbitrary step-size. ρ = 1 and MI=10k were used, being the optimal values for noiseless stationary environments. 

As for the identical FIR test, this MSE comparison is made with no additional noise in the input signal to test the true 

fitting capacity of the respective filter and their orders without interference. It is expected that higher filter orders 

approximate unknown system better, especially for IIR systems, having per definition an infinite impulse response, thus 

theoretically requiring an infinite amount of FIR filter taps for an error-free approximation.  

As illustrated above, about 20 taps are required to arrive at an acceptable MSE of about 5.5e-03 after 10k iterations, 

which also converge the fastest, being the highest order filter. The lower order filters fluctuate more strongly than their 

FIR counterparts, while the 5 taps filter stabilizes only after 6k iterations. The 0th and 1st order filters show such strong 

variations that the averaging effect of the MSE doesn’t smooth it out, meaning that the prediction error fluctuates 

strongly leading the filter weights to oscillate strongly. Furthermore, the asymptotic behavior flattens out with increasing 

order, as was already the case in the FIR study. 

The fitting procedures of the filter aren’t displayed, as they are only distinguishable from Figure 4.2 by their respectively 

higher absolute prediction error and MSE values. 

Taking the first weights provided by the 20-tap approximation as the correct FIR weights, the value of the first common 

weights are pretty well approximated with differences only in the e-03 range.  

Figure 4.7: IIR impulse responce 

Figure 4.8: LMS and RLS: order vs MSE 
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4.3.3 Noise resistance 
As for the FIR test, this IIR fitting MSE comparison is performed with optimal LMS step-size and ρRLS scalar-matrix 

initialization to limit their respective covariate effects on the tests of the respective orders’ fitting capacity. The 

environment being static, the optimal forgetting factor of 𝜌 = 1 was taken. 

The below figure displays the ρRLS’s MSE evolution in descending filter order with 5 taps being the left-most plot. The 

LMS’s MSE curves weren’t displayed, having identical evolution and elevation but with slightly more flattened initial 

asymptotic behavior. A direct comparison of the 4th order curves of both algorithms is represented by the below figure. 

As for the FIR-fitting example, all NA=10 MSE curves oscillate strongly despite the MSE’s average smoothing effect, 

indicating irregular weight updates instead of convergence and remain at the same height irrespective of the filter order. 

The lowest noise amplitude’s 5-tap MSE curves no longer approach zero but converge to 0.25, while all other curves 

oscillate more strongly when gaining MSE. Unlike the FIR’s MSE curves, the lower noise amplitude curves aren’t only 

translated vertically but also progressively take the NA=10’s shape, which might be due to their reduced distance to it 

compared to the FIR case. 

The following figure compares the noise resistance of a 5-tap ρRLS and LMS filter with optimal hyper parameters and 

increasing additive noise amplitude. 

As expected from section 3 and (Haykin, 2014), the scalar matrix initialization values decrease with increasing SNR, while 

the optimal converging LMS step-size µ decreases with input power (Moschytz & Hofbauer, 2000). As for the FIR tests, 

Both NA=10 MSE curves are almost identical, landing around 2.7 for all orders and filters. The NA=1 RLS curve converges 

faster than the LMS’s, however, both become similar after 4k iterations landing at 1.46 for the 5-tap filters. Also similarly 

to the FIR example, the ρRLS’s NA=0.1 MSE curve converges faster than the LMS’s both lowest noise levels, all ending up 

in the 0.25 region. 

The final weights’ results display identical trends to those of the FIR section. This section was therefore strongly 

abbreviated to avoid unnecessary redundancy and the comparison tables were omitted. 

The two lowest noise variances provide the best fittings, yielding the test series’ lowest MSE’s and the closest weights to 

the 20-tap noiseless fitting from previous section, taken as solution for the fitting. The best approximations are performed 

Figure 4.9: LMS and RLS: noise amplitude vs order 

Figure 4.10: LMS and RLS: noise amplitude vs MSE 



 

12 

by the highest order filters with the ρRLS mostly outperforming the LMS. The weights shrink with increasing noise levels, 

with NA=1 halving the weight amplitude and NA=10 resulting in weights two orders smaller than the correct values.  

In conclusion, identical rules apply to FIR fitting than to IIR fitting: the noise level must be a magnitude order lower than 

the information containing input signal. Furthermore, the filter requires sufficient taps to perform proper fitting, making 

it more sensitive to noise, which can reveal problematic as potentially high orders are required to approximate an IIR 

adequately. 

5 Non-stationary signals 
This section analyzes the ρRLS’s and LMS’s adaption capacity to an abrupt system change after fitting for 5k samples. 

Identical tests to the previous sections are performed after some required clarifications about the goodness of fit metric. 

5.1  Common aspects 

5.1.1 MSE vs Absolute Prediction Error 
In the following test series, the mean squared error (MSE), taken as metric until now must be carefully interpreted. As 

the name suggests, it is an average of all previous values, which for long time series has a very strong smoothing effect. 

Thus, even abrupt changes in prediction error and thus filter weights will not necessarily be visible in the MSE 

development. Furthermore, this test series takes 10k samples, which if used as audio would represent a 4.41th of a 

second. Thus, real word examples feature lengths superior by orders of magnitude resulting in a stronger smoothing. 

This effect is illustrated by the two following figures: 

Both figures represent the adaption process of a 4th order FIR filter, whose target system (4th order FIR) abruptly switches 

at the 5kth sample. As expected for a noiseless signal and optimal hyper parameters, the left filter having the right order 

achieves an almost zero (3.3e-04) MSE, while the first order FIR performs poorly (MSE=0.13).  

Comparing the absolute prediction error to the MSE graphs, one notices that the spike in the middle of the left figure at 

the system change time isn’t visible in the above MSE. This is due to the aforementioned smoothing effect of long 

averages, as the spike representing 50 values of 5050 gets flattened by the averaging process. 

Likewise, in the right figure, the system change increases the absolute prediction error in a more visible manner than the 

MSE. 

In further MSE plots, a vertical bar will visually signify the system change at 5k samples and the y-axis range will be 

reduced to increase MSE changes’ visibility. This chops off the initial MSE peak height, which isn’t of particular interest. 

5.1.2 ρRLS: ρ value 
This section requires the RLS to use the forgetting factor to react to the environment change. As seen in stationary signal 

section, where the grid-seach systematically chose the 𝜌 = 1, reactivity to environment change comes at the cost of 

convergence and low MSE values. 

Figure 5.1: Mean Squared Error vs Absolute Prediction Error 
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The first grid-search tests all 4 noise levels on the FIR and IIR systems for 40 values linearly chosen between ρ = 0.8 to 

ρ = 1.0 with the default initialization of 1000 for the SkalarMatrix. The most used values were the two highest options 

(1.0 and 0.995). 

Furthermore, since previous tests proved the importance of correctly initializing the scalar matrix, a further grid-search 

was performed to find a possible relation between the optimal forgetting parameter and the scalar matrix. The grid-

search tested a logarithmic (base 2) range creating 30 values from e-04 to e+05 for the matrix initialization against a linear 

value series of 30 values between 0.9 and 1, resulting in 900 combinations per noise level for all of the 3 orders, thus 

10 800 parameter combinations.  

The results show that an optimal scalar Matrix initialization reduces the MSE as described in section 3.3 but has no effect 

on the forgetting factor, as the optimal ρ remains in {0.993, 0.996, 1.0} with the vast majority of cases being 0.996 and 

rare exceptions in 0.94. However, choosing a small ρ (around 0.94) reduces the MSE after a bad scalar matrix initialization. 

Furthermore, the best scalar matrix initialization value exhibits convex behavior in the tested ranges (e-04 to e+05), 

meaning that a single (global) optimum seems to exist. This is ideal for optimization processes and grid-searches since 

the hyper-parameter search can follow the MSE reduction direction until the MSE rises again and be guaranteed that the 

optimal choice was reached. 

5.2  FIR System change 
The second system is an 4th order FIR with coefficients [0.4, -0.01, 0.3, -0.18, -0.2] replacing the initial of [0.7, 0.1 -0.03, 

0.18, -0.24] after 5k iterations. Since the filters have half the time to converge, final MSE value is expected to be higher 

than in previous test.  

5.2.1 Filter order impact 
This section’s tests series are identical to those in section 4.2, thus no additional noise is added, the LMS’s step-size is 

defined by the same grid-search and higher order filter are expected to provide better approximations. The filter order’s 

influence on the MSE evolution is tested with a supplementary system change at 5k samples, visually denoted with a 

vertical blue line. Thus, the ρRLS requires a variable forgetting factor ρ, since the environment is no longer static. To prove 

this effect, ρRLS order test is performed with 𝜌 = 1 and with a grid-search choosing ρ from a linear 40 values series 

between 0.90 and 1. The scalar matrix is initialized with 10k as previously to allow a direct comparison. 

As expected from previous tests, the MSE values are ranked in descending order for all filters. The 4th order LMS and ρRLS 

with 𝜌 ≠ 1 fit both systems with almost no error, while the 𝜌 = 1 ρRLS rapidly gains in MSE. The MSE-jump of the 𝜌 = 1 

ρRLS’s filters is due to the sudden system change destabilizing the filter, which tries to find a compromise between the 

old and new environment leading the very poor performance. 

The three filters’ lower orders all exhibit a similar MSE-jump at system change. The shallowest jump is performed by the 

ρ ≠ 1 ρRLS filter, followed by the LMS then the 𝜌 = 1 ρRLS. 

The 4th order 𝜌 ≠ 1 ρRLS filter and LMS yield the correct weights and respectively exhibit an MSE of 4e-04 and 3e-04, 

while the ρ = 1 ρRLS results in 0.085 MSE with deviations from the correct weights in the 0.1 magnitude order, for all 

orders. The first order LMS and variable ρ RLS filters divergence from the desired weights is in the e-03 range respectively 

yielding an MSE of 0.127 and 0.13. The 0th order variable ρ ρRLS outperforms the LMS by offering a divergence in the e-

03 order compared to e-02 for the LMS. 

Figure 5.2: LMS and ρRLS and RLS: FIlter order vs MSE 
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Furthermore, the grid search chose different ρ values for the ρRLS depending on filter order. The 5-tap is optimal with 

the lowest possible ρ, forgetting the most possible data, while lower orders retain more data to optimize MSE. The two 

following plots illustrate the two different behaviors. 

 

The 5 taps filter is the only one capable of approximating both given systems in an error-free way. As previous tests 

revealed, the ρRLS requires about 5 iterations to fit the unknown system of same order starting with a scalar matrix as 

autocorrelation matrix. The recursive autocorrelation matrix, however, once filled with values requires many samples to 

be completely overwritten by new data. Thus, as displayed by the above figure, lower data retention with low ρ values 

allow a faster adaption to the new system, as the MSE curves are classed in ascending ρ values. 

As illustrated above, all different ρ values’ MSE curves remain parallel under 5k with the highest ρ values having the 

lowest MSE. Upon system change, the two highest ρ values, being the two lowest (blue and orange) MSE curves in the 

above figure, fail to adapt to the new system and rise quickly, while the other MSE lines remain relatively parallel to each 

other. The previously best forgetting factors thus become the two worst. The third initially best MSE also slightly rises 

but then remains parallel to the others and thus remains lower than them. Thus, due to their respective failure to adapt, 

the two initially best MSE curves leave their place to the third best, which adapts to the environment change. 

5.2.2 Noise resistance 
This section analyzes the influence of the usual amplitudes of additive noise {0.01, 0.1, 1, 10} on diverse ρRLS and LMS 

filter orders. To reduce the covariate effect of the LMS’s step-size µ, the ρRLS’s forgetting factor ρ and scalar matrix 

initialization value, these were selected by grid-searches with respectively identical ranges as described in the stationary 

FIR test section, allowing direct comparison. 

  

Figure 5.3: ρRLS: Minimal ρ choice 

Figure 5.4: ρRLS: Maximal ρ choice 
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As in all previous sections, the higher filter orders (here 4th) are expected to outperform their lower order counterparts, 

as fitting systems with more degrees of freedom perform better approximations. Considering previous sections, filters 

are expected to become more noise sensitive while increasing their order, while the lowest noise levels are expected to 

yield better fittings. 

The two following figures display respectively the 0th (left) and 4th (right) order ρRLS and LMS MSE evolution with different 

noise levels. The 1st order filters weren’t plotted, exhibiting the identical rising MSE behavior following the system change 

as the 0th order filters.  

 The above figure displays MSE reductions after system change for all MSE curves except the 0th order 0.001 and 0.1 noise 

levels. Thus, for the dropping curves, the second system might be more noise resistant or easier to approximate due to 

other reasons than the first one. A second possible explanations is that the respective hyper-parameters are selected 

based on the final MSE and thus favor fitting on the second system. Either way, the respective MSE values drop indicating 

that the absolute prediction error drops and thus also the amplitude of the changes in weight updates. 

The rising MSE curves after system changes are known from previous section’s zero-noise tests. Possible explanations are 

that the portion of the second filter’s output amplitude is smaller in the first coefficients being [0.4, -0.01, 0.3, -0.18, -

0.2] rather than [0.7, 0.1 -0.03, 0.18, -0.24]. Thus, both lower order filters generate more error, despite estimating the 

coefficient correctly. 

Similarly to both stationary data tests (FIR and IIR), the maximum additive noise amplitude of the first system doesn’t 

converge but fluctuates around for both algorithms. Upon system change, however, the initial asymptotical part of the 

convergence behavior starts but not enough data is available to allow it to flatten out. 

Higher noise levels flatten the initial asymptotical behavior of convergence and as before, the ρRLS converges faster than 

the LMS at the same noise orders, except here for the NA=1 of the 0th order. As usual the NA=0.1 ρRLS converges faster 

than its LMS counterpart but doesn’t yield a better final MSE. Otherwise all final MSE values of all noise amplitudes and 

orders are classed in increasing noise order with the ρRLS outperforming the respective LMS counterparts. 

Identically to previous tests, the LMS step-size µ and the scalar matrix initial value decrease with increasing additive noise, 

respectively because of the input power and the signal to noise ratio. The forgetting factor ρ also rises with increasing 

noise levels and arrives at 1 for the maximal noise addition. This could be explained by the system “noticing” less and less 

the system change being progressively drowned in more noise. 

The analysis of the final MSE and filter weights is similar to the stationary FIR and IIR sections and is therefore abbreviated 

to the core findings and the table is omitted presenting no new information. 

The highest order filters and the lowest noise levels result in the best approximations with the ρRLS mostly outperforming 

the LMS. The weights shrink with increasing noise levels, with NA=1 halving the weight amplitude and NA=10 resulting in 

weights two orders smaller than the correct values.  

In conclusion, both LMS et ρRLS with ρ < 1 respond adequately to abrupt and therefore progressive system changes if 

the noise level remains a magnitude order lower than the input signal’s information containing part. 

Figure 5.5: LMS and ρRLS order 0 and order 4: noise amplitude vs MSE 



 

16 

5.3  IIR System change 

5.3.1 Filter order impact 
This section’s test procedures are identical to those presented in the stationary IIR and this FIR section on the system 

change data: The LMS’s step-size and the ρRLS’s forgetting factor are determined by the same grid searches and no noise 

is added. The scalar matrix is as usual initialized with 10k, allowing a direct comparison with all previous sections. 

 

As expected from previous tests, the MSE values appear in ascending filter order for both adaptive algorithms. In both 

cases, the second system seems easier to approximate, since the MSE falls asymptotically after the system change. Both 

plots are very similar, with the ρRLS having 0.01 lower MSE values than the LMS for every order. 

A fitting process inspection gives further insight on the filters’ 

convergence behavior. As seen in the drastic change in absolute 

prediction error mirrored in the decay of the MSE, the second system 

is approximated with almost no error by a 4th order FIR. Thus, either 

the unknown system is a FIR of same or smaller order or all other FIR 

and IIR weights are very small compared to the first five FIR 

coefficients. This system change illustrates well how the MSE’s 

smoothing effect strongly falsifies the perceived convergence behavior 

(see conclusion). 

The absolute prediction error of all adapted filters (other orders and 

ρRLS) display the same abrupt change, but the absolute prediction 

error of the second system is higher for the lower orders of both 

algorithms. From the absolute prediction error, one deduces that the 

weights fluctuate strongly rather than converge during the first system’s adaption but converge very quickly upon system 

change. 

The final weights given by both algorithms diverge from each other by an order of e-04 for the 5-tap filter. The ρRLS’s 

lower order instances predicts weights very similar to the optimal ordered filter, while the LMS prediction worsens more 

strongly. Thus, the ρRLS estimation is more stable for lower orders in this example than the LMS’s. 

5.3.2 Noise Resistance 
This section analyzes the influence of the usual amplitudes of additive noise {0.01, 0.1, 1, 10} on diverse orders of the 

ρRLS and LMS algorithms fitting an IIR system abruptly changing at 5k samples. To reduce the covariate effect of the 

LMS’s step-size µ, the ρRLS’s forgetting factor ρ and scalar matrix initialization value, these were selected by grid-searches 

with respectively identical ranges as described in the stationary FIR test section, allowing direct comparison. 

Based on previous sections, higher filter order and low noise environments are expected to be positively correlated with 

fitting performance, yielding MSE curves classed in ascending additive noise amplitudes. The below figure confirms those 

expectations by plotting the MSE curves of LMS and ρRLS filters with increasing added noise amplitude. The lower order 

filter graphs weren’t displayed, being similar to this one, while showing the distortion type described in section 4.3.3 

when reducing filter order. 

Figure 5.6: LMS and ρRLS Filter order vs MSE 

Figure 5.7: LMS: 5-tap adaption 
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Similarly to all previous sections, MSE curves over NA=0.1 don’t 

converge but oscillate indicating that no convergence takes 

place but that the filter weights fluctuate around a particular 

value for the first system. The second system, which, as noted 

in the previous section, is either a FIR or a FIR-like IIR is fitted 

with marginal error by 5-tap filters. Thus, the slow value decline 

is due to the MSE’s smearing effect and the correct MSE value 

would appear after many more iterations. Thus, there is a drop 

in absolute prediction error resulting in lower amplitude weight 

updates. 

As in all previous tests, both lowest ρRLS filters converge faster 

than both equivalent LMS filters. In this test the NA=1 ρRLS 

clearly outperforms its LMS counterpart, while both NA=10 

filters perform similarly. 

The LMS’s step-size and the ρRLS scalar matrix initialization value decrease with higher noise amplitudes as in previous 

tests, due to respectively the input power rising and the SNR decreasing. As aforementioned, the forgetting factor ρ also 

rises with noise, as the filters probably notice the system change less and use more input values to stabilize against noise. 

The analysis of the final MSE and filter weights is similar to all previous sections and is therefore abbreviated to the core 

findings and the table is omitted presenting no new information. 

Increasing the noise levels decreases the weight’s values, with as usual the NA=1 weights being half the amplitude of the 

desired value and the NA=10 weights being two magnitude orders too small. Final MSE value-wise, higher filter orders 

are more sensitive to noise (Moschytz & Hofbauer, 2000), while being more precise for low noise environments. The 

highest order filters and the lowest noise levels result in the best approximations with the ρRLS mostly outperforming 

the LMS. 

The conclusions of the stationary IIR and non-stationary FIR apply to this section. 

6 Prediction 
This section compares the LMS algorithm’s and its kernelized version the KLMS’s (kernel least mean squares) performance 

in future sample prediction. Using a delayed version of the input signal as desired signal allows to transform the filter 

adaption into prediction training. Both filters are fitted on a 500 sample training set to estimate the system to predict its 

future output based on previous outputs. 

To prevent the KLMS from overfitting despite the use of Platt’s novelty criterion, the grid search compares the filter 

performance on the validation set rather than the training set. This gaussian distribution-based KLMS implementation 

requires setting 5 hyper parameters as explained in section 2.2.4, one of which is the window-size filling this paper’s two 

subsequent sections. The other four parameters are determined by a grid-search to find their respective optimal value. 

The step-size search is a linear spacing of 20 values in the [0.01; 2] interval, similarly to the kernel-size search, whose 

upper bound is however 20. Platt’s novelty criterion’s minimal distance and minimal error optimal values were 

respectively searched in [1e-07, 5e-07, 1e-06, 1e-05, 1e-04, 1e-03] and [1e-06, 1e-05, 5e-05, 1e-04, 5e-04]. The proposed 

grid-search is relatively coarse but contains already 20 × 20 × 6 × 5 = 12k (times 2 accounting for both window-sizes) 

values, each taking 1:40h to compute on a 8core 4.3GHz machine despite all mentioned optimizations. Furthermore, a 

previous broader and coarser grid-search was performed, which allowed to tighten the respective ranges, leading to the 

current ones. 

The LMS’s step-size grid-search is a 40 values logarithmical series from the computed maximum µ to a 10th of it. This 

range was also deduced from previous coarser and broader grids. 

The 1-sample-ahead prediction is performed by delaying the input signal by one sample and performing the usual filter 

application. For the LMS, this is a convolution with the input signal, while the KLMS applies its output formula 

⟨𝑎𝑖−1; 𝐾(�̲�[𝑖], 𝒞𝑖−1)⟩ sample-wise to the input. 

For unknown reasons, the LMS prediction requires a delay compensation of NTaps/5, while the KLMS requires no 

compensation at all. 

Figure 5.8: LMS and RLS noise amplitude vs MSE 
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6.1  Order 5 
This section compares the prediction capacity of a 5-tap LMS with a KLMS using a window-size of 5, which in both cases 

corresponds to the number of previous values considered for the prediction.  

The following figure displays both filter’s adaption process on the provided training data with a direct output 

comparison with the resulting MSE and APE evolution. 

 The first KLMS prediction is zero, due to the implementation mimicking an empty sum for the first iteration. Similarly, 

the LMS’s weight vector is initialized as zero vector also yielding a zero output at the first iteration. The KLMS fitting 

process is slow, as satisfying results are only obtained after about 380 iterations, while the LMS yields already good 

results after the first strong function decline at 90 samples. This observation is mirrored in the respective MSE’s, as the 

LMS’s displays a sharper asymptotical transient as the KLMS. The LMS training-set MSE is 3.55e-03, while the KLMS 

validation-set MSE is 2.95e-03. 

The absolute prediction error (APE) is for this use a better metric than the MSE as the exact unpredictable spots are 

marked by peaks. The KLMS prediction error shows strong peaks throughout the training phase, which progressively 

decrease in amplitude, displaying the fitting process. The LMS’s APE peaks when the desired output reaches its lowest 

point and rises again, denoting that the filter systematically mis-predicts those regions and that weight updates are 

performed. 

The optimal step-size for the LMS is about 0.3414, while being about 0.2194 for the KLMS, both quite large compared to 

the previous system identification examples. The grid-search chose a Kernel-size of 1.0621, a minimal Euclidean distance 

of e-07 and a minimum error of e-04 for the novelty criterion. e-07 is the smallest available value, already resulting from 

previous grid-search, meaning that the KLMS essentially tries to deactivate this criterion by clipping it to the minimum at 

each search interval enlargement. 

The following figure compares the LMS and KLMS predictions to the desired values. The range was restricted to thousand 

samples allowing a better visual prediction comparison. Considering that the signal is fairly periodic, not much 

information is lost. 

Figure 6.1: KLMS and LMS: 5 previous values adaption 

Figure 6.2: LMS and KLMS: 5 previous value prediction comparison 
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As illustrated above, the LMS’s prediction is almost undistinguishable from the desired data with an APE peaking around 

0.02. The exact total APE is 131.62 for 10k samples yielding an average of 0.013, representing about 1.46% of the desired 

signal’s amplitude. The weights are [0.67722, 0.22991, 0.02313, 0.0185,  0.0532]. 

The KLMS, however, produces visibly inaccurate predictions with the APE peaking around 0.25, as it tends to chops off 

peaks. The total APE is 672.05, which is 5 times superior to the LMS’s APE, yielding an average of 0.0672 APE representing 

7.4% average prediction error. 

In conclusion, not only is the LMS more efficient to fit, having a lower algorithmic complexity and fewer hyper-parameters 

to search (here 40 against 12k), it produces more accurate predictions for this system. Thus, for this use case, the LMS 

should be preferred, however, some strongly non-linear systems might require using the KLMS. 

 

6.2  Order 10 
This section compares the prediction capacity of a 10-tap LMS with a KLMS using a window-size of 10, corresponding to 

the number of previous values considered for the prediction.  

Following figure displays the KLMS’s and LMS’s adaption process, providing insight in their respective output signal, MSE 

and APE. 

Similarly to the previous 5-tap test, the first predictions of both filters is zero, then progressively rises to fit the input 

signal. The KLMS requires again most of the training samples to provide a reliable fitting, while the LMS converges after 

90 samples. Both fittings resemble strongly their 5-tap counterparts. 

The LMS’s irregularity is slightly higher on the curve (= earlier) and the smaller peaks are lower in amplitude, while the 

filter generally converges marginally faster than the 5-tap counterpart. At each APE peak the LMS’s weights are updated, 

resulting in a final weight vector of [ 0.4636,   0.23386,  0.07334, -0.0047,  -0.0227,  -0.00933,  0.01782,  0.05098,  0.08643,  

0.1217 ], which surprisingly doesn’t resemble the 5-tap LMS weight coefficient, except for the second coefficient. 

The 10-tap KLMS, however converges slower and yields more APE and MSE error in general. Its APE displays more and 

smaller peaks than its 5-tap counterpart. The LMS’s MSE converges faster than the KLMS’s, each respectively landing at 

4.8e-03 (LMS training-set error) and 3.53e-03 (KLMS validation-set error). 

The optimal step-size for the LMS is 0.171, while being 0.115 for the KLMS, being respectively half the values of their 5-

tap counterparts. The grid-search chose the same kernel-size (1.062), minimal Euclidean distance (e-07) as before, while 

reducing the minimum error from e-04 to e-06. Since both those values are at their minimum, one can deduce that the 

grid-search tries to deactivate the novelty criterion to add more samples to the KLMS’s dictionary to increase fitting 

precision.  

Figure 6.3: KLMS and LMS: 10 previous values adaption 



 

20 

The following figure compares the LMS and KLMS predictions to the desired values in the limited range of thousand 

samples. 

As illustrated above, the LMS once more outperforms the KLMS, while yielding less accurate predictions than the 5-tap 

LMS. The LMS’s APE peaks often around 0.07, while being on average 0.031 representing 3.4% of the signal amplitude, 

which is more than double the 5-tap APE. The KLMS’s APE peaks often around 0.2, with 0.051 average representing 5.7%, 

which is an improvement over the 5-tap KLMS but is still worse than both LMS filters. 

Similarly to the previous conclusion, the LMS should be preferred to the KLMS being more efficient to predict, having 

fewer hyper-parameters and yielding better predictions. However, increasing the LMS order doesn’t necessarily improves 

the prediction, while the contrary holds for the KLMS. 

7 Methodology critique and further work 
The first generalized critique on this paper is that each filter is fitted with a single noise addition. It would have been more 

representative to generate hundreds or thousands of different noise signals and to fit filters on them after a grid-search. 

A single grid-search would be sufficient, as hyper-parameters should stay identical being independent of the exact 

random series if the characteristics like amplitude and mean remain unchanged. Limited computing power prohibited 

this, as some of the tests already required 1:40h to proceed with a single noise addition. 

Furthermore, the LMS’s and ρRLS’s weight vectors, as recommended by Moschytz and Hofbauer (2000), get initialized as 

zero vector. Further test could determine better initialization methods like for example random numbers with the input 

power as variance. 

7.1  LMS 
Further modifications and optimizations of the LMS algorithm exists, which can be implemented with minor modifications 

like the NLMS and the Newton-LMS (Moschytz & Hofbauer, 2000). 

Furthermore, the step-size should be made variable of two components, the input level (as done in the LMSconverge 

function and in the NLMS algorithm) and also become smaller when converging, such that the filter approaches rapidly 

the optimal coefficients then slows down to allow more precise convergence. The step-size reduction criterion shouldn’t 

be based on the iteration number, as systems could change over time or involve noise levels slowing down conversion. It 

should instead be based on the summed or averaged absolute prediction error (APE), directly measuring the error and 

the weight changes. Thus, when the weights start stabilizing, the step-size should decrease to increase convergence 

precision. 

7.2  ρRLS 
One drawback of the ρRLS is the complexity in 𝑂(𝑛2), which can be overcome by using the F-RLS which is 𝑂(𝑛), while 

delivering similar results (Moschytz & Hofbauer, 2000). 

Figure 6.4: LMS and KLMS: 10 previous value prediction comparison 
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7.3  KLMS 
The KLMS algorithm has the highest complexity of the three tested algorithms despite all mentioned optimizations. The 

minimum distance threshold of Platt’s novelty criterion requiring the computation of the distance to all stored points 

could be deleted, as all of this paper’s grid-searches essentially cancelled it. This would reduce the algorithms complexity 

by 𝑂(𝑖), with 𝑖 being the iteration number. Alternatively, other dictionary sparsification methods can be tried. 

Furthermore, the filter() function can be vectorized, by constructing a matrix out of the to be processed input windows 

and performing matrix-vector multiplications rather than scalar products in a sequential for loop. This can only be done 

with the 𝑓(⋅) function in filter, since the weight vector mustn’t be updated, forcing sequential computations. 

7.4  Grid-search 
The grid-search function should be extended such that upon finding the best hyper-parameter combination it triggers a 

second grid-search in the vicinity of the best hyper-parameters. The grid-size is thus strongly reduced while keeping the 

same points amount, leading to a more refined search. To illustrate, upon finding the best hyper-parameter value, the 

two surrounding grid values can be taken as upper and lower bound for the new grid search, which is done in every 

parameter space dimension. This procedure’s repeated application guarantees convergence towards the found hyper-

parameter space local minimum, with no guarantee of it being a global minimum. 

Furthermore, the grid-search should take a boolean list as input informing about hyper-parameter convexity, allowing it 

to extend the range until the error metric (average APE or MSE) stops decreasing. 

Finally the KLMS would benefit from a real 𝑛-fold cross-validation, splitting the training data into 𝑛 subsets and using 

one of them as test data and use the test-set as final validation to prevent overfitting on the validation set. 

7.5  MSE 
The mean squared error, as mentioned numerous times throughout the paper, strongly falsifies the error metric and is 

therefore prone to amelioration. 

Firstly, squaring the error unnecessarily exaggerates the metric, as values < 1 get marginalized, while errors > 1 get 

exaggerated. This is problematic, since audio data is per convention in the [−1; 1] range with most of the waveform 

samples smaller than the signal’s amplitude. To illustrate, a amplitude 1 sinus has at most one sample respectively at 1 

and -1 pro period, while arbitrarily many, depending on sampling and frequency, are smaller. Thus, the size 2 range has 

less than 50% chances to yield a difference greater than 1, skewing the metric downwards. 

As aforementioned, MSE’s smoothing effect due to averaging prohibits detailed analysis, glossing over peaks and 

smearing out sudden prediction error changes as illustrated in Figure 5.7. The MSE’s long averaging process also makes 

it inadequate for grid-searches, favoring a quickly converging filter landing at higher prediction errors than a very slowly 

converging filter with a smaller step size. The latter will have higher prediction values on average, even if lower values 

are reached towards the end. Furthermore, this paper’s test series were relatively short in audio standards (10k samples 

correspond to 0.23 seconds at 44.1kHz) and that thus the smoothing effects are tremendously stronger than analyzed 

here. 

The proposed solution is a moving average or moving median-based absolute prediction error (MAAPE). The absolute 

function replacing the square doesn’t exaggerate the error in any direction, while the moving average or median allows 

limited data smoothing, generating readable graphs while preserving the temporal structure to account for sudden 

changes. The MSE is easily computed in real time during the iteration, being a multiply-add procedure. If real time moving 

average computation is necessary, a round-robin array of the desired averaging length can track the sample arrival order 

to subtract the oldest sample from the sum and add the new arrival after scaling it. This efficiently updates the average 

without requiring a scalar product (weighted sum) to be unnecessarily recomputed at each iteration. 

8 Conclusion 
The LMS and ρRLS algorithms adequately fit filters if enough taps are provided (especially important for fitting IIR’s) and 

if the additive noise is lower in amplitude than the signal containing the system to be identified. Environment variations 

can be accounted for by the LMS and ρRLS, while the KLMS presumably requires specific clearing mechanisms outside of 

this paper’s scope. Higher order filters perform better fitting, having more degrees of freedom, while setting the 

unnecessary weights to zero if required. 
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The LMS’s prediction capacity outperforms the KLMS’s in the tested example, but the KLMS’s higher complexity might be 

necessary for strongly non-linear systems. Contrary to system fitting, the use of higher orders don’t necessarily result in 

better predictions for the LMS while the KLMS benefits from larger window-sizes.  

All this paper’s results confirm the importance of the right hyper-parameter choice, which should ideally be automatized 

by grid-searches. 
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