
MODIFICATIONS TO SING, THE SYMBOL-TO-INSTRUMENT-NEURAL-GENERATOR

Stéphane Thunus, Jeffrey Thomsen, Daniel Meyer

Technische Universität Berlin
Straße des 17. Juni 135

10623 Berlin

ABSTRACT

Index Terms— Machine learning, Neural Syntheziser,
SING, CQT, ELU

The following paper examines possible improvements
that specific activation and loss functions bring to the neural
audio waveform generator SING. As activation function, the
original rectified linear unit (ReLU) is replaced by the ex-
ponential linear unit (ELU). Because of its self-normalizing
properties and increase in convergence speed, a better loss
is expected, which should result in more realistic audio sam-
ples. Concerning the loss function, the original Short-Time
Fourier Transform (STFT) is replaced by other spectral rep-
resentations like the Constant Q Transform (CQT) and the
Mel-frequency cepstrogram (MFC). Being closer to the hu-
man perception of pitch, they are expected to improve the
perceived quality of the neurally generated audio samples.

Though in the autoencoder and fine tuning part of SING
ELU leads to better convergence, in the LSTM network it per-
forms worse than ReLU. The fact that the resulting audio sam-
ples do not reach the quality of the ReLU-models leads to the
conclusion that the LSTM network is probably the most im-
portant part for audio generation quality. Unfortunately, prob-
ably due to an implementation error, neither CQT nor MFC
seem to work as part of the loss function and so no informa-
tion could be gained in this regard.

1. INTRODUCTION

1.1. General introduction

Over recent years, ”artificial intelligence” has become an ab-
solute buzzword, leading deep neural networks (DNN), Au-
toencoders (AE), convolutional neural networks (CNNs) and
recursive neural networks (RNNs) to find an application in
most computerized fields of human activity. The classical
problem tackled by artificial neural networks and machine
learning in general is the classification of data, however, sub-
stantive amounts of research dwells upon the idea of neural
data generation.
This paper aims to propose ameliorations to the SING tech-
nology (described in 1.3) which is a neural audio waveform

generation model. The practical uses of neural audio gener-
ation are, amongst others, text to speech transformations and
audio data augmentation for various purposes including mu-
sical samplers, game engines or foley data sets for film- or
video-audio. Data augmentation leads to the generation of
greater data sets from limited data, which is useful for sound
effects that are expensive to record or produce, while real-
time audio generation allows to save enormous amounts of
storage space for game engines or musical samplers.

1.2. Existing methods and related work

Composition with machine learning preceded the attempt at
generating directly audio waveforms. While initial attempts
tried to computationally find a suitable set of rules, more re-
cent works such as DeepBach [1] are successfully using deep
learning. Based on the notes of the individual voices, the
rhythm and metadata such as fermata, key or time signature,
the artificial neural network (ANN) composes new chorales
resembling Bach’s original work.
Furthermore, Machine learning is successfully applied to text
to speech conversion (TTS). While older models convert text
to an audio representation, then use a vocoder to generate
the synthesized speech, newer models based on convolutional
networks, such as Deep Voice 3 [2], achieve more realistic
results. In addition, the TimbreTron model [3] transfers tim-
bre between instruments using a spectral representation of the
signal in combination with a convolutional architecture. The
Short-Time Fourier Transformation (STFT) is replaced by a
Constant Q Transform (CQT) to match human hearing (see
section 1.4.2).
All these approaches do not generate audio waveforms di-
rectly but audio representations, which require other ANNs
like WaveNet [4] or SampleRNN [5] which generate audio-
waveforms on a sample-by-sample prediction, which surpris-
ingly leads to decent results, albeit computationally heavy.

1.3. Symbol-to-Instrument Neural Generator – SING

SING, the Symbol-To-Instrument-Neural-Generator used for
this paper, generates the audio waveforms of the desired
instruments directly, from an input vector containing instru-

ment, pitch and velocity information [6]. This is done by
calculating frames of 1024 samples simultaneously, which
is much faster than the sample-wise generation used by
WaveNet or SampleRNN.
The dataset of choice is NSynth [7], a collection of 1006
instruments from high-quality commercial sample libraries,
where each instrument has 88 pitches, or less if limited by its
range, and 5 velocity levels. The samples are in mono and
four seconds long at a sampling frequency of 16 kHz and a
bit-depth of 16 bits. In addition, each sample is annotated
with its source types (acoustic, electronic or synthetic), its in-
strument family (brass, keyboard, voice etc.), and a maximum
of 10 note qualities (bright, distortion, reverb etc.). However,
as aforementioned, SING only uses the basic instrument,
pitch and velocity information.
The network architecture consists of four convolutional layers
on top of an LSTM network and is trained in three separate
steps. First, the convolutional network is trained with an
autoencoder from which only the decoder part is used in the
final model. The encoder part takes the target waveform as
input and translates it into a sequence representation. Each
sequence element represents an audio frame of 1024 samples
with a hop size of 256 samples, thus the encoder performs a
dimensionality reduction of the raw waveform. The gener-
ated sequence is then used as the target output of the LSTM
network which has one cell per audio frame. Its inputs are the
above-mentioned feature vector, corresponding to the audio
sample used to train the autoencoder, and some additional in-
formation about each time step, which is not further discussed
by the authors of the original paper. Once the training of the
individual modules is completed, the LSTM network and the
convolutional decoder are plugged together and fine-tuned
end-to-end in a third training. Now, the feature vector serves
as input and a waveform is directly generated. This training is
performed with a loss function the authors call spectral loss,
which is further described in 1.4.2 and is the subject of the
experimental modifications of the paper.

1.4. Theoretical Background

1.4.1. Activation functions

Activation functions (= transfer functions) are mathematical
functions applied to the sum of the node inputs to determine
the output value, emulating the firing rate of a biological neu-
ron. They are hyperparameters and thus have to be set before
training and usually don’t change once set.

Rectified Linear Units (ReLU)

The ReLU activation function is given as follows:

f (z) = max (z, 0) (1)

ReLU are the successors of sigmoid functions types, cor-
recting diminishing gradient among other problems encoun-

tered during neural network training. However, ReLUs are
unbounded functions but neural networks layers work better
on normalized data, which is why batch normalization is used
[8]. Batch normalization is a z-standardization of the neuron
weights of each layer, which can be thought of pre-processing
the input of each hidden layer to ameliorate their training
(ibid). The ELU activation function being a special case of
the SELU family, allows the construction of Self Normaliz-
ing Networks (SNNs) [9], where some sort of normalization
is done by the function itself [10].

Exponential Linear Units (ELU)

ELUs were introduced by Clevert et al. [10] as an ameliora-
tion of the Rectified linear Units (ReLU) family in terms of
convergence speed and classification accuracy. It is given as
follows (in our case a=10:

f (x) =

{
x if x > 0

a (ex − 1) if x ≤ 0
(2)

Like ReLUs, their identity in R+ eliminates vanishing
gradients problems encountered in deep neural networks with
sigmoid functions [10]. As aforementioned, ELUs also nor-
malize the weights by having saturated negative values, which
pushes the mean unit activation towards zero, speeding up
learning (reduced bias shift) and increasing accuracy [11].
This type of normalization is of interest, being of lower com-
plexity than batch normalization. However, ELU have higher
computational complexity than ReLU, since an exponential
has to be calculated for negative values rather than being rec-
tified to zero. Additionally, ELU have a noise robust deacti-
vation state by saturating the negative values to the hyperpa-
rameter a [10], avoiding neuron deactivation.
Faster convergence means either that for a constant number
of epochs (=model refinement iterations) the resulting model
generates better samples or that in order to achieve the same
quality of samples, the generating model needs fewer epochs,
which means less training time.

1.4.2. Loss functions

Loss functions in machine learning measure how far off the
prediction or the generated medium is from the ground truth.
This function should encapsulate all relevant aspects of the
medium to be generated or subtleties of the classification to
be an accurate measurement tool.
Thus, the second proposed change to the SING architecture
is the use of CQT and Mel frequency cepstrums, which, by
being closer to human perception of sound, should yield re-
sults that are of better perceived quality.
The respective sample norms are squared element-wise to
generate a power spectrum and passed through a logarithm
to approximate the decibel scale of human hearing. The ab-
solute value is used to lose the information about the relative

phase of the partials, which is not very perceptually relevant,
thus would unnecessarily increase the loss. Furthermore, a
small constant scalar ε is added to prevent the logarithm to
tend towards −∞ when its argument approaches zero. The
value of each sample is thus:

l (x) := log
(
ε+ |{STFT, CQT, MFC} [m]|2

)
(3)

The loss compared to the ground truth is then calculated
as follows:

L1 (x, x̂) = ||l(x)− l(x̂)||1 (4)

The rectilinear metric induced by the L1 norm was pre-
ferred over Euclidian distances in order to increase the loss
function sensitivity by avoiding the vanishing of small values
due to squaring [6].

Short time Fourier Transform (STFT)

The STFT is a sequential application of a discrete Fourier
Transform (DFT), which transforms time domain signals into
frequency domain signals. The disadvantage for audio related
purposes is that the frequency bins are equally spaced and
thus are not representative to human hearing.

Constant Q analysis (CQT)

The Constant Q analysis is designed to represent audio in a
way that mimics human hearing. This means a higher fre-
quency resolution and lower time resolution in the lower fre-
quencies, and the opposite in the higher frequencies. The sig-
nal is filtered in the desired bands and a variable size discrete
Fourier transform (DFT) is done proportionally to the variable
length of the window, meaning for example smaller segments
for higher frequencies. As described in [12], it is defined as
follows:

X [k] =
1

N [k]

N [k]−1∑
n=0

W [k, n]x [n] e−j 2πQn
N[k] (5)

To illustrate, a DFT analysis with a ∆f of 5Hz, would only
have two bins to describe the octave between 10 and 20Hz,
while having 2000 to describe the octave between 10kHz and
20kHz, while the CQT keeps the same number of bins per oc-
tave. Furthermore, the CQT analysis keeps a constant relative
y-distance on Spectrograms, because of its proportional scale,
which helps the analysis of the convolutional neural networks
(CNN). The bin spacing can be calculated as follows:

δfk = 2
1
n δfk−1 =

(
2

1
n

)k
δfmin (6)

Mel frequency cepstrum (MFC)

Similarly to the two transformations described above, the Mel
frequency ceptrum analysis represents the power-spectrum
passed through a log to emulate human amplitude perception.
Furthermore, like the CQT, the frequency scale is adapted
to correspond to the human frequency perception. This is
achieved by applying a mel-filter scale that measures the
perceived equal distances between pitches as well as using
triangular filterbanks that emulate different regions of the
basilar membrane. It is defined as follows:

MFCCm [n] =

L∑
l=1

log

(
N−1∑
k=0

|tril [k]X [m, k]|2
)

· cos
(nπ
L

(l − 0.5)
) (7)

One main difference between the MFC and the previous trans-
forms is that a discrete cosine transform (DCT) is used instead
of a DFT. The DCT has the property of de-correlating the en-
ergy content of the overlapping frequency bins and tends to
concentrate energy in the lower bins, which assures a greater
compression of information.

2. METHODS

2.1. General

This research aims to compare the differences between the
usage of ReLU and ELU as activation functions concerning
convergence speed, loss minimization and quality of the gen-
erated instrument samples. Furthermore, the ameliorations
brought by transformations based on psychoacoustical fre-
quency scales are investigated, measured by the same afore-
mentioned means.
To our knowledge, no further optimization like batch normal-
ization or dropout is used during the SING training. The use
of batch normalization would reduce the difference between
ReLU and ELU, since ELUs are self-normalizing activation
functions [10].

2.2. Training data and calculated models

Due to the limited available computational capacity, smaller
models had to be calculated and the existing NSynth data
set was reduced to a few selected instruments. In order
to still have as much variety as possible, the three instru-
ments keyboard acoustic 007, mallet acoustic 011 and vo-
cal acoustic 011 were selected. The mallet is mainly per-
cussive, the voice mostly sustained, while the piano sound
is both. Furthermore, the voice is especially well suited as a
benchmark for perceptive quality, being what the human ear
is the most sensitive to.
To be able to compare the different activation and loss func-
tions and further spot effective combinations, the models

were trained with all possible combinations of the aforemen-
tioned instruments and functions: {Piano, Mallet, Voice, all
three together} x {ReLU, ELU} x {STFT, MFC, CQT}, re-
sulting in 4x2x3=24 different models. To increase statistical
significance the piano-only-models were calculated 10 times.
A second set of models was calculated, where the two activa-
tion functions were combined with data sets of different sizes.
To increase variety, a new set of five instruments was used,
consisting of brass acoustic 001–005. The following combi-
nations were calculated: {brass 1, brass 1–3, brass 1–5} x
{ReLU, ELU} = 6 models. Due to time restrictions, these
models could only be calculated once. No model with CQT
or MFC loss functions were calculated because of technical
difficulties as explained in later sections.
An overview of the number of models for different combina-
tions of instruments and functions can be seen in table 1. To
evaluate the perceived quality of the models, samples were
generated for each model.
Each instrument has its own pitch range with five veloci-
ties each. This is of importance as no previously unknown
pitches could be generated, despite counter indication in the
original paper, which would have been of interest for model
generalization measurements. For an overview about the
instruments, their ranges and number of samples, see table 2.

Table 1. Number of calculated models and training samples
for different combinations of instruments, training losses and
activation functions

instr. STFT CQT MFC sampl.
ReLU ELU ReLU ELU ReLU ELU

keys 10 10 10 10 10 10 440
mallet 1 1 1 1 1 1 440
voice 1 1 1 1 1 1 225
k+m+v 1 1 1 1 1 1 1105
brass1 1 1 – – – – 170
brass1–3 1 1 – – – – 680
brass1–5 1 1 – – – – 1330

2.3. Activation functions

As explained, the exponential linear unit (ELU) is expected
to increase model accuracy (reducing the loss) and conver-
gence speed, thus creating higher quality samples or reduce
the model training time. This is made visible by plotting the
training loss for each model and activation function at every
training epoch for each of the three training steps metrics (AE,
LSTM, full model).

Table 2. Training data instruments with their pitch range, the
number of training samples and generated samples

instrument range sampl. gen. samp.
keyboard acoustic 007 A,,–c””’ 440 89
mallet acoustic 011 A,,–c””’ 440 89
vocal acoustic 011 D–b[” 225 52
brass acoustic 001 G–e’ 170 41
brass acoustic 002 C,–e”’ 325 41
brass acoustic 003 F–f” 185 32
brass acoustic 004 C,–e”’ 325 41
brass acoustic 005 C,–e”’ 325 41

2.4. Loss functions

Though only one spectral representation – CQT, MFC or
STFT – is used as training loss, the loss for the other two
representations is calculated as well. This makes it possible
to see how a particular loss evolves when another loss is used
for training. For terminological disambiguation purposes, this
paper arbitrarily defines ”training loss” as the loss function
which is used to actually train the model in contrast to ”side
losses”, which are calculated for comparison purposes. It is
expected that during training the side losses are reduced as
well. However, the details might be of interest – for example
an STFT loss could be reduced faster using a CQT as training
loss function rather than the STFT itself.
Similarly to the ReLU/ELU comparison, all training and
side losses of all models will be written to a log file, which
will then be used to evaluate and analyze the different loss
functions.

3. RESULTS

3.1. Training Loss

Figures 1 to 3 show the side losses of the 10 piano models
when training the auto-encoder, which is the first network of
the model. The plots group the evaluation functions in STFT,
MFC and CQT and compare their evolution over epochs for
the different training losses.
To illustrate, on figure 1, the yellow lines show the evolution
of the STFT loss when STFT/ELU is used as training func-
tion, while on figure 2 they show the evolution of the MFC
loss function with STFT/ELU as training loss, only differing
by their starting values.
It can be observed that there is only movement and conver-
gence when the STFT is used as training loss, irrespectively
of the plotted side loss, as MFC and CQT remain straight
lines throughout all three plots.
Furthermore, on all three figures the STFT/ELU loss (in yel-
low) tends to start at higher values than other loss functions
but then decreases in 3 to 4 epochs to the level of the other

5 10 15 20 25 30 35 40 45 50
Epoch

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030

Lo
ss

Training Loss
ReLU STFT
ELU STFT
ReLU MFC
ELU MFC
ReLU CQT
ELU CQT

Fig. 1. STFT loss of the autoencoder for different training
losses, 10 identical piano models

5 10 15 20 25 30 35 40 45 50
Epoch

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Lo
ss

Training Loss
ReLU STFT
ELU STFT
ReLU MFC
ELU MFC
ReLU CQT
ELU CQT

Fig. 2. MFC loss of the autoencoder for different training
losses, 10 identical piano models

5 10 15 20 25 30 35 40 45 50
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ss

Training Loss
ReLU STFT
ELU STFT
ReLU MFC
ELU MFC
ReLU CQT
ELU CQT

Fig. 3. CQT loss of the autoencoder for different training
losses, 10 identical piano models

5 10 15 20 25 30 35 40 45 50
Epoch

0.018

0.019

0.020

0.021

0.022

0.023

0.024

Lo
ss

Fig. 4. STFT training loss of the autoencoder, ReLU activa-
tion, 10 identical piano models

5 10 15 20 25 30 35 40 45 50
Epoch

0.170

0.172

0.174

0.176

0.178

0.180

0.182

0.184
Lo
ss

Fig. 5. MFC training loss of the autoencoder, ReLU activa-
tion, 10 identical piano models

5 10 15 20 25 30 35 40 45 50
Epoch

0.0850

0.0875

0.0900

0.0925

0.0950

0.0975

0.1000

Lo
ss

Fig. 6. CQT training loss of the autoencoder, ReLU activa-
tion, 10 identical piano models

5 10 15 20 25 30 35 40 45 50
Epoch

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030

Lo
ss

Training Loss
ReLU STFT
ELU STFT

Fig. 7. STFT training loss of the autoencoder, comparing
ReLU and ELU activation, 10 identical piano models

5 10 15 20 25 30 35 40 45 50
Epoch

0.021

0.022

0.023

0.024

0.025

Lo
ss

Training Loss
ReLU STFT
ELU STFT

Fig. 8. STFT training loss of the LSTM, comparing ReLU
and ELU activation, 10 identical piano models

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

0.025

0.030

0.035

0.040

0.045

0.050

Lo
ss

Training Loss
ReLU STFT
ELU STFT

Fig. 9. STFT training loss of the fine-tuning, comparing
ReLU and ELU activation, 10 identical piano models

5 10 15 20 25 30 35 40 45 50
Epoch

0.020

0.022

0.024

0.026

0.028

0.030

0.032

0.034

0.036

Lo
ss

Training Loss
ReLU STFT
ELU STFT

Fig. 10. STFT training loss of the autoencoder, comparing
ReLU and ELU activation, 3 instrument model

5 10 15 20 25 30 35 40 45 50
Epoch

0.032

0.033

0.034

0.035

0.036
Lo

ss

Training Loss
ReLU STFT
ELU STFT

Fig. 11. STFT training loss of the LSTM, comparing ReLU
and ELU activation, 3 instrument model

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

0.029

0.030

0.031

0.032

Lo
ss

Training Loss
ReLU STFT
ELU STFT

Fig. 12. STFT training loss of the fine-tuning, comparing
ReLU and ELU activation, 3 instrument model

5 10 15 20 25 30 35 40 45 50
Epoch

0.02

0.03

0.04

0.05

0.06

0.07

Lo
ss

STFT Training Loss
ReLU, 1 instr.
ELU, 1 instr.
ReLU, 3 instr.
ELU, 3 instr.
ReLU, 5 instr.
ELU, 5 instr.

Fig. 13. STFT training loss of the autoencoder, comparing
ReLU/ELU activation, brass models

5 10 15 20 25 30 35 40 45 50
Epoch

0.040

0.042

0.044

0.046

0.048

0.050

0.052

Lo
ss

STFT Training Loss
ReLU, 1 instr.
ELU, 1 instr.
ReLU, 3 instr.
ELU, 3 instr.
ReLU, 5 instr.
ELU, 5 instr.

Fig. 14. STFT training loss of the LSTM, comparing
ReLU/ELU activation, brass models

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

0.048

0.050

0.052

0.054

0.056

0.058

0.060

Lo
ss

STFT Training Loss
ReLU, 1 instr.
ELU, 1 instr.
ReLU, 3 instr.
ELU, 3 instr.
ReLU, 5 instr.
ELU, 5 instr.

Fig. 15. STFT training loss of the fine-tuning, comparing
ReLU/ELU activation, brass models

losses to then plateau for 20 epochs, after which (around
epoch 25) there is a sudden continuation of the convergence.
The ELU function converges in a more stable manner than
the ReLU, which erratically converges, while also partially
displaying the same plateau-ing behavior.
For the STFT side loss (figure 1), the STFT/ELU converges to
lower points in almost all cases than the STFT/ReLU, which
is not the case for MFC side loss (figure 2). It can further be
observed that in the short term (less than 30 epochs) ReLU
always lies beneath ELU.

Figures 4 to 6 are a training loss-only, ReLU-only version
of the figures described above (1 to 3) for clarity on how
training with the newly implemented MFC and CQT loss
compares to the original STFT loss.

Figure 7 is the same as figure 4 but additionally display-
ing the STFT/ELU convergence to be compared with figures
8 and 9. Figure 8 displays the convergence for the second
network that constitutes the SING model, which are LSTM
cells. The ELU models roughly start at the same point as the
ReLU Models but remain constant throughout the training,
while ReLU losses show a distinct downwards trend and end
up at lower points than their ELU counterparts. Figure 9
shows the final fine-tuning stage, where all networks of the
model are put together and trained together. One can observe
that the ELU losses systematically start at a lower level than
the ReLU losses and remain relatively constant, while the
ReLUs show an upwards trend (divergence).

Figures 10 to 12 display the three training stages of the
SING model for the 3 instrument data set. The same trend
as for the piano data sets is to be observed, which is that
auto-encoders and the final stage converge faster with ELU
loss functions, while the LSTM stage performs worse with
ELU loss.

Figures 13 to 15 show the convergence of the different
models trained with the brass data sets. As before, in the auto-
encoder stage, the ELU loss outperforms the ReLU loss, ex-
cept for the single instrument data-set, where the ReLU loss
is slightly under the ELU loss. Figure 14 shows again that
ReLU losses outperforms ELU losses for LSTM networks,
while ELU losses outperforms ReLU losses in the final stage
in figure 15.

3.2. Perceptive evaluation of generated audio samples

For the first set of models (piano, mallet, voice and their
combination, see 1), three quality levels can be identified.
Representative STFTs for each category can be seen in figure
16–18. They are keyboard samples with pitch = f]’ and veloc-
ity = 100. The according models used three instruments, with
ReLU/CQT (no convergence) for the low quality example,

Fig. 16. STFT of a low quality keyboard sample

Fig. 17. STFT of a medium quality keyboard sample

ELU/STFT for the mid quality example and ReLU/STFT for
the high quality example.
All samples generated by models using CQT or MFC be-
long to the low quality category, where the STFT consists
of vertical, non-modulating bars with the same energy. The
resulting sound is static tonal noise, which doesn’t resemble
the original keyboard samples in any way. Samples gener-
ated with the STFT/ELU combination mostly belong to the
medium-quality category, where mild modulation and there-
fore adaption is visible. In the STFT models, the vertical bars
have different energy content which slightly modulates over
time. The resulting sound is amplitude modulated static noise
with more tonal content, still not resembling the original key-
board samples.
The samples generated by the STFT/ReLU combination
mostly belong to the high-quality category, which is sub-
stantially sonically superior to the others. In most cases, the
fundamental frequency, as well as the harmonics are clearly
visible, resulting in a correct perceived pitch. In some other
cases, the pitch can’t be correctly recognized, though there
is a spectral structure. Most samples have a distinct tempo-
ral structure according to the original piano sample with an
initial transient and decaying energy envelope over time. Ve-
locity is, however, rarely recognizable and the samples sound
electronic due to additional tonal noise.

Fig. 18. STFT of a high quality keyboard sample

For the second set of models (between 1–5 brass in-
struments as training data, see table 1), the representa-
tive STFTs can be seen in fig. 19–22. They are samples
of brass acoustic 001 at pitch d’ with a velocity of 100.
Applying the same qualitative categories, the combination
brass1/ELU (see fig. 19) results in low quality samples with
no visible modulation in both frequency and time, and as a
result only static, tonal noise. The brass1/ReLU-model (see
fig. 20) already shows a clear time structure but still contains
a lot of noise being a good medium quality sample, which
might be put in the high quality category. All other models,
which are brass1–3 and brass1–5 for both ELU and ReLU
definitely produce high quality samples. Often, the pitch can
be recognized, and the velocity perceived because of the dif-
ferent spectral energy in the harmonics.
Interestingly, the quality of the combination brass1–5/elu
(see fig. 21) seems to be lower compared to the other three
models, even lower than the combination brass1–3/elu, which
uses less training data. From the three best models, the com-
bination brass1–5/relu (see fig. 22) seems to have the edge
over the other two. A rough overview of the quality of each
model can be found in table 3.

Table 3. perceived quality of the generated samples for each
model

instr. STFT CQT MFC
ReLU ELU ReLU ELU ReLU ELU

keys + –/◦ – – – –
mallet + – – – – –
voice ◦/+ –/◦ – – – –
k+m+v ++ ◦ – – – –
brass1 ◦/+ – – – – –
brass1–3 ++ ++ – – – –
brass1–5 ++ + – – – –

Fig. 19. STFT of a brass sample from a model using 1 brass
instrument as training data and ELU as activation function

Fig. 20. STFT of a brass sample from a model using 1 brass
instrument as training data and ReLU as activation function

Fig. 21. STFT of a brass sample from a model using 5 brass
instruments as training data and ELU as activation function

Fig. 22. STFT of a brass sample from a model using 5 brass
instruments as training data and ReLU as activation function

4. DISCUSSION

Firstly, using MFC and CQT in the loss function did not
work, as when used as training loss, one sees no convergence.
Any side loss, even the STFT side loss, stays constant over
all epochs. Also, none of the generated samples show any
sign of modulation (see fig. 16) which would be a display an
adaption to the training data. The fact that there is no change
in loss shows that the program code not working properly.
Otherwise, some movement should be visible, even if the loss
does not improve.
Thorough review of our code modifications show this prob-
lem is probably due to transforming the original Torch ten-
sors into Numpy arrays for computing the MFC and CQT
time-frequency-representations with the respective LibRosa
functions. While the transformation of the numerical values
works as desired and the generated spectral representations
are correct, issues are encountered when applying the loss
function. This Torch function uses some additional metadata
from the previous processing of the tensors (in our case the
initial waveform is already in tensor form). It is however
not possible to view, access or change this information and
apparently it is lost in the process of transforming the tensor
into a Numpy array and back, which results in the loss func-
tion not updating the weights used for training, thus making
any comparisons to the initial STFT-based loss calculation
impossible. Looking at the side losses in figures 1 to 3 lets
us conclude that the loss calculation works on a numerical
level. It is visible that MFC and CQT side losses also change
through training, which shows that if the weights are updated
correctly (using STFT training loss) and they are only used
for evaluation, the expected development of the loss is shown
in these as well. Conversely, training the models with MFC
or CQT loss, also the STFT side loss is constant, emphasizing
that the problem we encountered lies not in the calculation of
the different spectral representations, but in the calculation of
the training loss.

Comparing ReLU and ELU activation, it can be seen
that ELU converges faster when training the autoencoder and
fine tuning of the model, but seems to converge slower for
the LSTM. When trying to connect this information to the
quality of the generated audio samples, where ReLU models
were superior to their ELU counterparts (see table 3), it seems
reasonable to conclude that the LSTM is the most important
part of the network, because a slower convergence in this part
leads to a lower overall quality. The fact that ELU performs
worse at the LSTM part yields question of how strongly
all the other parts of the complex SING-network might be
adapted to using ReLU as activation function, and if some of
the code was consciously optimized to ReLU. In any case,
it can be stated, that despite the better convergence in the
autoencoder and fine tuning part, ELU does not improve the
network at its original task, which is creating good sounding
audio samples.

In future work, it would be interesting to see if ReLU is
still superior to ELU with larger training data, or if this ad-
vantage will vanish. Also, more recently developed activa-
tion functions like Scaled Exponential Linear Units (SELU,
see [9]) could lead to better results. But the main improve-
ment idea was to replace the STFT in the loss function with
a more musical spectral representation. Sadly, any questions
on that matter remain unanswered. Thus, the most interesting
and obvious task would be to investigate, how the authors’
technical problem can be solved to be able to use CQT and
MFC to calculate the training loss.

5. REFERENCES

[1] Gaëtan Hadjeres, François Pachet, and Frank Nielsen,
“Deepbach: a steerable model for bach chorales gener-
ation,” in Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70. JMLR. org,
2017, pp. 1362–1371.

[2] Wei Ping, Kainan Peng, Andrew Gibiansky, Sercan O
Arik, Ajay Kannan, Sharan Narang, Jonathan Raiman,
and John Miller, “Deep voice 3: Scaling text-to-speech
with convolutional sequence learning,” arXiv preprint
arXiv:1710.07654, 2017.

[3] Sicong Huang, Qiyang Li, Cem Anil, Xuchan Bao,
Sageev Oore, and Roger B Grosse, “Timbretron: A
wavenet (cyclegan (cqt (audio))) pipeline for musical
timbre transfer,” arXiv preprint arXiv:1811.09620,
2018.

[4] Aaron van den Oord, Sander Dieleman, Heiga Zen,
Karen Simonyan, Oriol Vinyals, Alex Graves, Nal
Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu,
“Wavenet: A generative model for raw audio,” arXiv
preprint arXiv:1609.03499, 2016.

[5] Soroush Mehri, Kundan Kumar, Ishaan Gulrajani,
Rithesh Kumar, Shubham Jain, Jose Sotelo, Aaron
Courville, and Yoshua Bengio, “Samplernn: An un-
conditional end-to-end neural audio generation model,”
arXiv preprint arXiv:1612.07837, 2016.

[6] Alexandre Défossez, Neil Zeghidour, Nicolas Usunier,
Léon Bottou, and Francis Bach, “Sing: Symbol-to-
instrument neural generator,” in Advances in Neural In-
formation Processing Systems, 2018, pp. 9041–9051.

[7] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander
Dieleman, Douglas Eck, Karen Simonyan, and Moham-
mad Norouzi, “Neural audio synthesis of musical notes
with wavenet autoencoders,” 2017.

[8] Sergey Ioffe and Christian Szegedy, “Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[9] Günter Klambauer, Thomas Unterthiner, Andreas Mayr,
and Sepp Hochreiter, “Self-normalizing neural net-
works,” in Advances in neural information processing
systems, 2017, pp. 971–980.

[10] Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter, “Fast and accurate deep network learn-
ing by exponential linear units (elus),” arXiv preprint
arXiv:1511.07289v5, 2016.

[11] Yann A LeCun, Léon Bottou, Genevieve B Orr, and
Klaus-Robert Müller, “Efficient backprop,” in Neural
networks: Tricks of the trade, pp. 9–48. Springer, 2012.

[12] Judith C Brown, “Calculation of a constant q spectral
transform,” The Journal of the Acoustical Society of
America, vol. 89, no. 1, pp. 425–434, 1991.

