

VOLUME XX, 2022 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Dictionary Morphing Orthogonal Least Squares
Regression

for NARMAX-based Black-box Fitting

 Stéphane Thunus1, Julian Parker2, and Stefan Weinzierl1
 1Technische Universität Berlin - Fakultät I, Berlin, 10587, Germany

2Native Instruments, Berlin, 10997, Germany

Corresponding author: Stéphane Thunus (Stephane@Thunus.org).

ABSTRACT This paper proposes an optimization pipeline allowing the recursive forward orthogonal least

squares regression (rFOrLSR) to morph its regressors to better fit the desired system. The rFOrLSR is a super-

vised machine learning algorithm generating a sparse symbolic representation of non-linear recursive systems

by choosing the optimal regressors from a given set (called dictionary) and their coefficients. A symbolic rep-

resentation is an equation containing arbitrary non-linear terms, which describes or approximates a system.

This paper focusses on rFOrLSR dictionaries containing (permissibly discontinuous) elementwise non-

linearities applied on arbitrary regressors. The morphing operation adds scaling coefficients and arbitrary line-

ar combinations of dictionary terms inside the chosen regressor’s outer elementwise non-linearity. First, a cri-

terion determining regressor morphability is introduced. Then, a procedure determining what multiplicative

coefficients and what supplementary terms to add is presented. This is followed by a local coefficient infinites-

imal optimization procedure searching the best coefficients inside the chosen non-linearity. Once all regressors

are chosen and potentially morphed, all coefficients are infinitesimally optimized to adjust the entire expres-

sion. Thus, the proposed pipeline performs transformations on the user-defined regressor-set to increase fitting

precision and model sparsity of NARMAX systems.

INDEX TERMS Forward Orthogonal Least Squares Regression; Model Structure Detection; NARMAX;

Non-linear System Identification; Supervised Machine Learning For Parameter Estimation; Symbolic Regres-

sion.

I. INTRODUCTION

NARMAX stochastic processes (Non-linear Auto-

Regressive Moving Average with eXogenous inputs) have

been used to model spatial and temporal non-linear systems

in the fields of medicine, chemistry, biology, geography,

industrial process control, economics and more [1]. The

NARMAX models’ application fall into the three categories

of model identification, prediction, and approximation.

Model identification emulates a given system to recreate its

output for analysis or compensation purposes. To illustrate,

having an algebraic representation of a non-linear distortion

might allow to trace it back to the component generating it

for correction or prevention. NARMAX models are of

interest, yielding interpretable non-linear equations

consisting of arbitrary terms, as opposed to for example

artificial neural networks constituted of large coefficient

matrices and non-linearities.

System behavior prediction allows, amongst other things, to

prevent the system from harming other (for example

electric) components or compress its output for trans-

mission or storage. To illustrate, if a NARMAX model

predicts 60% of the temporal or spatial signal’s variance

from past or surrounding values, only the remaining 40%

must be transferred or stored.

Lastly, NARMAX systems can also replace known but

computationally intensive processes, as is commonly done

with Taylor or Padé expansions.

This paper introduces a new algorithm to a black-box

fitting symbolic regression algorithm class named “Forward

Orthogonal Least Squares Regression” (FOrLSR /FOLSR/

VOLUME XX, 2022

OFR) [1]. FOrLSR algorithms are dictionary-based

symbolic least-squares regressions, as they generate (or are

provided with) a “dictionary” of regressors to find the

shortest possible regressor sequence describing the system

with the desired precision. To illustrate, common ex-

pansions like Taylor, Padé, Fourier, RBF and Wavelet are

equivalent to fitting the entirety (being non-sparse

expansions) of a dictionary containing a single function

type (polynomials, oscillations, hyper-ellipsoids, etc). The

FOrLSR’s dictionary, however, can contain any number of

arbitrary spatial and temporal functions and combinations

thereof, of which the FOrLSR selects only the most

relevant to describe the system.

A further advantage is the least squares framework

ensuring optimal fitting for arbitrarily large subspaces,

whereas Taylor- and Padé-like expansions are only optimal

at their expansion point and can quickly drift off.

The remaining paper is organized as follows: Section II

presents the rFOrLSR, while the new arborescent structure

and dictionary morphing are respectively introduced in

Sections III and IV. Section V provides examples and

benchmarks, while Section VI concludes the paper.

II. THE RECURSIVE FORWARD ORTHOGONAL LEAST

SQUARES REGRESSION (rFOrLSR)

From a linear algebra perspective, expansions are projec-

tions into function spaces with basis vector sequences

(BVS) depending on the used expansion (monomials for

Taylor, oscillations for Fourier, etc), whose potentially

infinite dimension depends on the expansion order. The

FOrLSR searches the BVS (model structure detection)

representing the given system response vector �̲� with the

smallest mean squared error and the shortest BVS (model

sparsity) [1]. This optimal BVS being system-dependent,

thus unknown, a large dictionary 𝐷C containing 𝑛C candi-

date basis vectors (= regressors) is iteratively scanned to

extract the best fitting regressor to add it to the BVS (re-

gression). Thus, the optimal point (regression coefficients

�̲̂�) in an optimal subspace (spanned by the BVS) of 𝐷C’s

columns is searched for. To make this operation computa-

ble, one evaluates the regressors, being transformations of

the system input, output or noise, on a zero-mean uniform

white noise sequence of length 𝑝. This corresponds to

working in a vector-space spanned by finite dimensional

observation vectors rather than a Hilbert space of functions.

This reduces the symbolic regression problem to the usual

least squares regression, solved with a Gram-Schmidt-based

QR-like decomposition augmented with a similarity metric

iteratively selecting the most similar basis vector to the

desired system’s output �̲� ∈ ℝ𝑝 (see [1]).

Thus, the FOrLSR acts as a linear equation system solver

(LESS) decomposing 𝐷C into an orthogonal and an upper

unitriangular matrix, both of lower dimensions, yielding a

solution vector �̲̂� containing the original system solution’s

non-zero entries.

The Gram-Schmidt-based orthogonalization allows a for-

ward regression not required to estimate model parameters

at each iteration when adding a regressor to the BVS [1][2].

Thus, the FOrLSR re-orthogonalizes the regressor observa-

tions dictionary 𝐷C ≔ [�̲�𝑗]
𝑗=1

𝑛C
∈ ℝ𝑝×𝑛C with respect to all

vectors (regressors) �̲�𝑗 previously added to the BVS (mod-

indeel). The orthogonalization, being the algorithm’s most

expensive operation, 𝑝 and 𝑛C being usually very large, it is

of interest to vectorize it and make it recursive.

A. THE ORTHONORMAL ANNIHILATOR MATRIX

[Edited] (1)

[Edited] (explanations)

The index set of unused regressors 𝑈 is an input, as the

morphing might require access to �̲�𝑚 being function argu-

ments of other regressors, which one might not want to

have as selectable regression terms.

ALGORITHM 1: The rFOrLSR with morphing algorithm

[Edited] (pseudo-code)

[Edited] (explanations)

The Section IV’s morphing takes place after respectively

2.e and 3.e and replaces ω̲ℓ and its norm by that of the

custom-made regressor. An unorthogonalized version is

appended to 𝐷C and, instead of 𝑈[ℓ], one appends

ncols(𝐷C) to ℒ, being the new regressor’s column number.

[Edited]

III. THE DICTIONARY MORPHING

It is unlikely that dictionaries contain the optimal non-

linearities of the form 𝑓⦿(∑ 𝜉𝑗�̲�𝑗
𝑟
𝑗=1), as this would require

an quasi-infinite number of infinitesimal increments for

each 𝜉𝑗 and a combinatorial order of �̲�𝑗 combinations for

each 𝑟 > 0 (see Section V-C). Morphing the non-linearities

via their arguments to adapt them to the fitted system keeps

the dictionary size 𝑛C finite, while increasing model sparsi-

ty in addition to fitting precision and speed.

From a linear algebra perspective, the dictionary morph-

ing (r)FOrLSR iteratively spans a vector-space by selecting

at each iteration the basis vector �̲�𝑚 the most similar to the

system response �̲�, then modifying it to resemble �̲� more.

This minimizes the amount of information lost due to fitting

error by generating an optimal vector-space. Thus, the

measurement is adapted to the system, rather than the sys-

tem being compared to pre-determined aspects. The system

is then represented as a single point (regression coefficients

�̲̂�) in the vector-space spanned by the selected regressors.

For comparison, classic expansions like Fourier and La-

place fit the entire given dictionary (= imposed terms and

expansion order), whereas the (r)FOrLSR selects only the

most relevant terms (= system dependent term selection and

VOLUME XX, 2022

expansion order). The next logical step is adapting the se-

lected regressors to the system, making the expansion fully

system dependent.

The morphing procedure comprises four steps. After the

(r)FOrLSR regressor selection, the regressor is parsed to

deduce the non-linearity 𝑓 and its argument �̲�0. If the func-

tion is morphable, the procedure continues with a genetic

vector-space generating algorithm determining how many

and which supplementary arguments �̲�𝑗 improve the fitting.

Finally, an infinitesimal optimizer determines the optimal

coefficients �̲� and returns the vector to the rFOrLSR.

The morphing order ↀ determines the number of added

arguments. Thus, 𝑓⦿(�̲�0) → 𝑓⦿(𝜉0�̲�0) is 0th order morph-

ing and 𝑓⦿(�̲�0) → 𝑓⦿(∑ 𝜉𝑗�̲�𝑗
𝑛
𝑗=0) = 𝑓⦿(𝑋ℓ�̲�) 𝑛th order.

The morphing keeps the FOrLSR philosophy that the func-

tion represented by each �̲�𝑗 is irrelevant, the �̲�𝑗 ∈ ℝ𝑝 being

treated as constant vectors. This greatly simplifies the pro-

cedure and allows morphing with arbitrarily complex basis

vectors. In particular, the functions represented by the 𝜒𝑗

can be discontinuous, non-differentiable, case-dependent

and range over multiple time steps.

The FOrLSR’s term-selection is described in Section II,

while the term parsing depends on the dictionary construc-

tor, being thus implementation dependent. The remaining

procedures are described in the following sub-sections.

The used squared correlation is replaceable with any ap-

plication-dependent similarity metric, whose gradient’s and

hessian’s analytic form is obtainable via Laure et al.’s

online tensor calculus tool [8].

A. MORPHABILITY

Not all functions are worth morphing. Firstly, adding argu-

ments to the identity is equivalent to adding them directly

to the BVS. Secondly, some functions exhibit a property

here labelled "relaxed homogeneity", where their added

argument coefficient 𝜉0 gets absorbed by their regression

coefficient �̂�:

Relaxed homogeneity (RH):

[Edited]

To illustrate, powers, fractions and absolute values exhibit

the RH property: [Edited]

ALGORITHM 2: A simple algorithm determining morphability

[Edited]

[Edited] (explanations)

B. THE GENETIC VECTOR-SPACE GENERATOR
(GenVSGen)

Once the selected term is parsed and known to be mor-

phable, the optimal arguments {�̲�𝑗}
𝑗=0

𝑟−1
 and their number

𝑟 ∈ {𝑖}𝑖=1
ↀ+1 can be searched for. The below algorithm is a

quasi-grid search illustrating the minimal procedure more

advanced genetic algorithms must follow.

[Edited]

ALGORITHM 3: A basic genetic vector-space generating algorithm

[Edited] (algorithm)

[Edited] (explanations)

If the optimal �̲� lies in [𝑠0; 𝑒0] × [−𝑠1; 𝑠1]𝑟−1, the correct

regressors 𝑋ℓ ≔ [�̲�𝑗 ⊕ 𝑚𝑗]
𝑗∈(𝒊𝟎⫲𝒕𝒎𝒂𝒙)

 are generally found,

with, however, no guarantee that the selected �̲�𝑚𝑎𝑥 is close

to the optimal �̲�, which is remedied by the following step.

C. THE SELF-ORTHOGONALIZING INFINITESIMAL
OPTIMIZER

The vector-space spanned by GenVSGen’s 𝑋ℓ allows infini-

tesimal optimization, which must construct vectors exhibit-

ing the dictionary’s centering and orthogonalization proper-

ties. The orthonormal annihilator matrix 𝑃A (equation (1)),

being equivalent to a Gram-Schmidt orthogonalization

iteration, embeds the current FOrLSR state by containing

the regressors’ selection order, norms and orthogonalized

versions. This allows self-orthogonalizing gradient- and

hessian-based optimization in the current BVS’s orthogonal

complement by embedding all necessary information in the

optimization problem. The ground truth �̲� is also orthogo-

nalized to eliminate the variance explained by previous

regressors: �̲�𝑜 ≔ 𝑃A�̲�.

In the general case, first-order line searches perform poor-

ly due to the optimization landscape’s roughness and nar-

row meandering valleys. Indeed, the hessian is mostly ex-

tremely poorly conditioned (up to 108) and should be as-

sumed indefinite for arbitrary non-linearities, which also

excludes most second-order line search methods.

A trust region method with Moré and Sorensen’s “Nearly

Exact” sub-problem solver [9] is an adequate infinitesimal

solver. It explicitly uses the hessian, allows it to be indefi-

nite, and is efficient for low dimensional problems.

The optimization problem is thus:

Cost Function: [Edited]

Be further 𝑓⦿
′ and 𝑓⦿

′′ elementwise functions applying the

selected non-linearity’s first and second derivatives.

�̲�(�̲�) and �̲�𝑜 being per construction mean-free, the gradi-

ent and the Hessian simplify to respectively:

Gradient: [Edited]

Hessian: [Edited]

To counteract the optimization function’s severe non-

convexity resulting in many local minima, the optimizer

should be retriggered multiple times while adding uniform

noise to GenVSGen’s output �̲�. Then, a validation proce-

VOLUME XX, 2022

dure consisting of the regression’s mean squared error

(MSE) should select the best result. GenVSGen’s �̲� should

be taken as baseline to guarantee, similarly to GenVSGen,

that this morphing step ameliorates the fitting precision.

The MSE computation requires the same steps as the

FOrLSR algorithm’s termination (steps 3.i, 3.j and 4.b in

Algorithm I, Section II-D) in addition to centering the gen-

erated regressor beforehand.

Overfitting can be reduced by rounding the coefficients in

�̲� up to a certain precision (quatization).

The selected morphed vector is then processed by the

FOrLSR as if taken directly from the dictionary 𝐷C. The

AOrLSR requires that the vector remains accessible to (at

least) the node’s children, while the final validation proce-

dure requires �̲� and the argument- and function-indices to

recreate the morphed regressor on different test sequences.

TODO More Supplementary remarks:

[Edited]

D. THE FINE-TUNING OPTIMIZER

Once the rFOrLSR has selected sufficient terms to meet its

termination criterion, the whole symbolic expression repre-

senting the system is available. Since the term selection and

infinitesimal optimization are done greedily, it is beneficial

to perform a final optimization step to optimize all coeffi-

cients simultaneously. While the self-orthogonalizing infin-

itesimal optimizer (SOIO) optimizes only the current re-

gressor’s morphing coefficients �̲�, this procedure optimizes

the expression coefficients �̲̂� in addition to each regressor’s

ξ̲. Thus, the gradient is the concatenations of all those par-

tial derivatives.

Gradient: [Edited]

Iteration: [Edited]

IV. EXAMPLES

Section V-C illustrates the dictionary morphing’s fitting

quality improvement and model sparsification and the qua-

si-impossibility to store a dictionary large enough to pro-

vide similar results.

For Sections TODO, the results slightly differ depending on

the white noise input sequence �̲�, thus the most representa-

tive of multiple runs was taken.

A. Case Study 1

The following example illustrates the morphing’s necessity

for composite regressors due to otherwise extreme storage

consumption and the model sparsification and precision

increase brought by the morphing.

Let system 3 be:

𝑦[𝑘] ≔ 0.4𝑥2[𝑘] − 0.5𝑦2[𝑘 − 2]
+ 0.6 cos{−0.3𝑥[𝑘 − 1]𝑦[𝑘 − 1]
+ 0.2 abs(𝑥[𝑘 − 2]𝑥[𝑘 − 3])
+ 0.9 𝑦[𝑘 − 1]}

System 3 is correctly retrieved by a single FOrLSR (=

height 0 arborescence) with 2nd order morphing with Sys-

tem 1’s 𝐷C (see (4)) using an input signal amplitude of 1.5.

This expansion nesting NARMAX models has the form

𝑦[𝑘] = ∑ θ𝑛𝑓𝑛 (∑ 𝜉𝑛,𝑗ℎ𝑛,𝑗 (∏ 𝜑𝑛,𝑗,𝑖[𝑘 − 𝑑𝑛,𝑗,𝑖]

𝑒𝑛,𝑗

𝑖=1

)

𝑟𝑛−1

𝑗=0

)

𝑛r

𝑛=1

with 𝑓𝑛, ℎ𝑛,𝑗 scalar functions and input/output terms 𝜑𝑛,𝑗,𝑖 ∈

{𝑥, 𝑦} with integer delays 𝑑𝑛,𝑗,𝑖 ∈ {𝑘}𝑘=1
5 , monomial expan-

sion order 𝑒𝑛,𝑗 ∈ {𝑘}𝑘=1
3 and regression coefficients θ𝑛 ∈

ℝ. Here, ℎ𝑛,𝑗(∏ 𝜑𝑛,𝑗,𝑖[𝑘 − 𝑑𝑛,𝑗,𝑖]
𝑒𝑛,𝑗

𝑖=1
) =̂ 𝜒𝑗 ∈ 𝐷C is constant

but the morphing correctly sets all ℎ, 𝜑, 𝑑, 𝑒 by choosing the

correct dictionary terms.

The dictionary size 𝑛C required for the above regression

without morphing is as follows: Assuming a coarse grid

with 𝑛G ≔ 21 steps of 0.1 in [−1,1] for each of the 𝑟 = 3

𝜉𝑗, yields 21𝑟 grid points per regressor combination. The

non-linearity contains any of the 363 monomial products as

starting term �̲�0, then any dictionary term can be added.

This yields 363 ∑ 21𝑟 1441!

(𝑟−1)!(1441−𝑟+1)!

3
𝑟=1 ≈ 3.5 ⋅ 1012

linear combinations for each of the 𝑛f ≔ 3 non-linearities.

Using 64bit floats and 𝑝 = 2′000, this requires about

153’000 TB of storage compared to about 22MB for the

above 𝐷C. This is excessive considering the limited diction-

ary, the low precision steps of 0.1 and the very reduced

argument range of [−1,1]. A grid with steps of 0.05 in
[−1,1] or steps of 0.1 in [−2,2] (𝑛𝐺 = 41) generates about

77.8 ⋅ 1012 linear combinations, thus 1.1 ⋅ 106TB.

The linear combinations number’s growth is approximate-

ly 𝒪(𝑛G
ↀ+1 × 𝑛C

ↀ × 𝑛f), being unfeasible even for small

problems.

GenVSGen requires only a very coarse grid (𝑛G = 13 in
[−1.5,1.5], thus steps of 0.25 in this example) to recognize

the correct terms, while the infinitesimal optimizer achieves

any precision and can span arbitrary ranges, via its trust

region method following the direction of ascend, if not

stuck in a local maximum.

Fitting the above example took GenVSGen about 18

hours (being uncompiled single-thread python on CPU).

This is many orders of magnitude longer than the

(r)FOrLSR, hence the need for more refined genetic algo-

rithms. First order morphing, however, takes about 4s,

making it trackable for larger arborescences.

For expression retrieval, the (r)FOrLSR must select the

non-linearity containing one correct argument, requiring the

unmorphed regressor to score higher in the similarity metric

than other dictionary terms. Thus, for certain functions, a

very coarse grid remains necessary. To illustrate, cos(𝑥[𝑘])

and cos(5𝑥[𝑘]) are dissimilar for most metrics and thus

VOLUME XX, 2022

cos(𝑥[𝑘]) wouldn’t be selected by the (r)FOrLSR, despite

being morphable into the correct term. Thus, 𝐷C must con-

tains terms more similar to cos(5𝑥[𝑘]).

Similarly, low argument variance can make most of the

data stay in 𝑓’s quasi-linear part such that no or the wrong

𝑓 is chosen by the (r)FOrLSR. To illustrate, if system 3 had

all coefficients inside the cosine set to respectively −0.4,
0.4, 0.4, the (r)FOrLSR would chose 𝑥[𝑘 − 1]𝑦[𝑘 − 1]
instead of cos(𝑦[𝑘 − 1]) as third term.

Fitting system 3 with a single (r)FOrLSR with 𝜌 = 0.001

yields the results in the following Table IV, which com-

pares different morphing orders via their BVS length 𝑛r,

mean absolute error (MAE), maximal deviation (MD) and

the variability measure median absolute deviation (MAD).

The last three metrics are expressed in percentage of the

output signal �̲�’s amplitude. To illustrate, first order morph-

ing yields a model with 6 terms which deviates on average

0.37% from the target �̲�’s amplitude but not more than

4.58% with a median deviation of 0.232%.

TABLE V: The evolution of BVS length 𝒏𝐫, mean absolute error, maximal

deviation and median absolute deviation when fitting System 3 with
increasing morphing order from no morphing to 2nd order.

Table V 𝑛r MAE % MD% MAD%

None 9 0.54% 6.64% 0.395

Order 0 9 0.49% 7.17% 0.355

Order 1 6 0.37% 4.58% 0.232

Order 2 3 exact exact exact

Similarly to the above example, in most cases, the morph-

ing reduces BVS length and the error metric.

Being a greedy algorithm, the morphing procedure adds

terms to the non-linearity to maximize each morphable

term’s similarity to the system output �̲�. In some cases,

however, this results in suboptimal BVS, as multiple mor-

phed terms share and fit the variance of what would other-

wise be covered by a single dictionary term. This is the

same greediness problem discussed at Section III’s start and

in [2] and is thus similarly mitigated by using deeper arbo-

rescences or low morphing orders.

B. Case Study 2
TODO: RBF example

C. Case Study 3
TODO: Wavelet/ sparse Fourier example

V. CONCLUSION

The first proposed improvement is the orthonormal annihi-

lator matrix 𝑃A, which implicitly contains the current re-

gression state.

The proposed orthonormal annihilator matrix 𝑃A further

allows computing genetic vector-space generating algo-

rithms and self-orthogonalizing infinitesimal optimizers to

morph regressors. This allows to generate custom regres-

sors for the current system, which would require a quasi-

infinite dictionary size, if generated in advance.

These modifications achieve sparser, lower error and

more complex NARMAX expansions.

The first authors’ python AOrLSR / DMOrLSR library is

available at https://github.com/Stee-T/rFOrLSR.

Further research in the NARMAX-expansions aspect

should go towards more efficient genetic vector space gen-

erating algorithms and potentially re-morphing already

morphed regressors at each added regressor. Furthermore,

closed-form gradient- and hessian-expressions for more

advanced similarity metrics and for nested functions might

be of interest. Finally, the rich literature on external param-

eter support such as [11][12][13], would allow modulating

the expansion’s parameters to model system changes.

AKNOWLEDGMENT

The first author thanks Paolo Combes for his thorough

proof-reading and feedback.

REFERENCES
TODO add all other sources

[1] S. A. Billings, “Model Structure Detection And Parameter

Estimation”, Nonlinear System Identification: NARMAX Methods in

the Time, Frequency, and Spatio-Temporal Domains. s.l.:John

Wiley & Sons, Ltd.. 2013, chapter 3, pp. 64-104.

[2] Y. Guo , L.Z. Guo, S. A. Billings, H.-L. Wei, Ultra-Orthogonal

Forward Regression Algorithms for the Identification of Non-Linear

Dynamic Systems. Neurocomputing letters, 2015 DOI:

10.1016/j.neucom.2015.08.022i.

[3] H.-L. Wei , S. A. Billings, Sparse Model Identification Using a

Forward Orthogonal Regression Algorithm Aided by Mutual

Information. IEEE Transactions on Neural Networks, 18(1), pp. 306

- 310, 2007, DOI: 10.1109/TNN.2006.886356.

[4] H.-L. Wei, S. A. Billings, Model structure selection using an

integrated forward orthogonal search algorithm assisted by squared

correlation and mutual information. International Journal of

Modelling Identification and Control, 3 (4). pp. 341-356. 2008,

DOI: 10.1504/IJMIC.2008.020543

[5] S. Laue, M. Mitterreiter, J. Giesen, , A Simple and Efficient Tensor

Calculus. New York, Conference on Artificial Intelligence, (AAAI),

2020.

[6] J. J. Moré, D. C. Sorensen, Computing a Trust Region Step. Siam

Journal on Scientific and Statistical Computing, Band 4, pp. 553-

572. 1983, DOI: 10.1137/0904038

[7] Q.M. Zhu, An implicit least squares algorithm for nonlinear rational

model parameter estimation, Applied Mathematical Modelling, 29,

pp 673-689. 2004. DOI: 10.1016/j.apm.2004.10.008

[8] H.-L. Wei, Y. Gu, A robust model structure selection method for

small sample size and multiple datasets problems. Information

Sciences, Band 451-452, pp. 195-209, 2018, DOI:

10.1016/j.ins.2018.04.007.

[9] Y. Li, H.-L. Wei, Billings S. A., P.G. Sarrigiannis, Identification of

nonlinear time-varying systems using an online sliding-window and

common model structure selection (CMSS) approach with

applications to EEG, International Journal of Systems Science,

2015, DOI: 10.1080/00207721.2015.1014448
[10] A. Kadochnikova, Y. Zhu, Z. -Q. Lang and V. Kadirkamanathan,

"Integrated Identification of the Nonlinear Autoregressive Models

With Exogenous Inputs (NARX) for Engineering Systems Design,"

in IEEE Transactions on Control Systems Technology, 2022, DOI:

10.1109/TCST.2022.3171130.

https://github.com/Stee-T/rFOrLSR

VOLUME XX, 2022

APPENDIX 1

This appendix describes the notation used throughout the

paper. Vectors are denoted with underlined lower-case

letters (�̲�), matrices and sets with uppercase letters (𝐴) and

scalars with lower-case letters (𝑎). Set and tensor construc-

tors are {𝑎𝑗}
𝑗=1

𝑛
≔ {𝑎1, … , 𝑎𝑛}, [𝑎𝑗]

𝑗=1

𝑛
≔ [𝑎1, … , 𝑎𝑛] (row

vectors) and [�̲�𝑗]
𝑗=1

𝑛
(matrices). They also support index

sets: [�̲�𝑗]
𝑗∈𝑆

≜ [�̲�𝑠1
, . . . , �̲�𝑠|𝑆|

] with 𝑆 ≜ {𝑠𝑗}
𝑗=1

|𝑆|
 and |𝑆| the

set cardinality. Be further [𝑎𝑗]
𝑗=1

𝑛,↓
≔ ([𝑎𝑗]

𝑗=1

𝑛
)

𝑇

 a vertical

(↓) tensor constructor and the horizontal concatenation

operator ⫲. For disambiguation, elementwise tensor func-

tions are denoted with a ⦿, such as �̲�⦿𝑛 ≔ [𝑎𝑗
𝑛]

𝑗=1

dim(�̲�),↓
 and

𝑓⦿(�̲�) ≔ [𝑓(𝑎𝑗)]
𝑗=1

dim(�̲�),↓
. Elementwise or broadcasted ten-

sor arithmetic operation symbols are in a circle such as

�̲� ⊘ �̲� ≔ [𝑎𝑗/𝑏𝑗]
𝑗=1

dim(�̲�)=dim(�̲�),↓
, �̲� ⊕ 𝑏 ≔ [𝑎𝑗 + 𝑏]

𝑗=1

dim(�̲�),↓
 or

𝐴 ⊙ �̲� ≔ [�̲�j ∘ �̲�]
𝑗=1

ncols(𝐴)
 with �̲�𝑗 ∘ �̲� a Hadamard product.

Tensor slicing is denoted with vector indexation such as

𝐴[[𝑗]𝑗=1
𝑠 , 𝑠] ≔ [𝑎𝑗,𝑠]

𝑗=1

𝑠,↓
. Matrix columns are denoted by

lower-casing the matrix name and adding their index such

as ω̲𝑗 ∈ Ω and �̲�S,𝑗 ∈ 𝐷S.

APPENDIX 2

TODO add Gradient; Hessian computation.

