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ABSTRACT This paper proposes a linear algebra-based supervised machine learning algorithm for the sym-

bolic representation of arbitrarily non-linear and recursive systems. It introduces multiple extensions to the al-

gorithmic class of “Forward Orthogonal Least Squares Regressions” (FOrLSR), which performs dictionary-

based sparse symbolic regressions. The regression, being only provided with the system’s input and output, 

performs variable combinations and non-linear transformations from a given dictionary of analytic expressions 

and selects the optimal ones to represent the unknown system. This yields a “symbolic” system representation, 

having the minimum number of terms to enforce sparsity, while keeping the highest possible precision. The 

proposed algorithm restructures the FOrLSR to be in matrix form (for large scale GPU and BLAS-like optimi-

zations), recursive (to reduce the complexity from quadratic in model length to linear) and allows regressors to 

be imposed (to include user expertise and perform tree-searches). Furthermore, the dictionary search is restruc-

tured into a breadth-first arborescence traversal kept sparse by four proposed theorems, corollaries and one 

pruning mechanism, while adding a validation procedure for the final model selection. The arborescence scans 

large search-space segments, significantly increasing the probability of finding an optimal system representa-

tion, while only computing a marginal fraction of the search-space. The regression and arborescence are solv-

ers for arbitrarily determined linear equation systems which maximize sparsity in the solution vectors.  

INDEX TERMS Forward Orthogonal Least Squares Regression, Model Structure Detection, NARMAX, 

Non-linear System Identification, Solution Sparsity Enforcing Linear Equation System Solver, Supervised 

Machine Learning For Parameter Estimation, Symbolic Regression.  

I. INTRODUCTION 

The world becoming increasingly reliant on data-driven 

decision-making, the need for robust algorithms capturing 

intricate non-linear relationships has never been greater. 

NARMAX stochastic processes (Non-linear Auto-

Regressive Moving Average with eXogenous inputs), 

characterized by their ability to encapsulate linear and 

nonlinear dependencies along with exogenous factors, offer 

a powerful framework for tackling the challenges posed by 

real-world stochastic phenomena. NARMAX models have 

been used to model spatial, temporal and spatio-temporal 

systems in the fields of for example space physics [1]-[3], 

neurology [4]-[9], industrial processes (such as diesel 

engine modeling [10], welding processes [11], hydrogen 

fuel cells [12] and well operation [13]), 3D modelling [14], 

genetics [15], marine ecosystem modelling [16], biology 

[17], control theory [18]-[20], fault and damage detection in 

many areas [21]-[25], economics [26], robotics [27], [28], 

chaotic system modelling [29], etc. 

NARMAX models are applied in the three main use-

cases: model identification, behavior prediction, and system 

approximation. 

In the model identification use-case, the system’s 

symbolic representation itself is of interest for analysis or 

compensation purposes. To illustrate, having an algebraic 

representation of a non-linear distortion might allow to 

trace it back to the component generating it for correction 

or prevention. NARMAX models are of interest, yielding 

interpretable and thus also verifiable [3], [25], [27] non-

linear equations consisting of arbitrary terms, as opposed to 
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for example artificial neural networks constituted of non-

interpretable coefficient matrices and non-linearities. 

System behavior prediction allows, amongst other things, to 

prevent the system from harming other components ([21]- 

[25]) or compress its output for transmission or storage. To 

illustrate, if a NARMAX model predicts 60% of the 

temporal or spatial signal’s variance from past or 

surrounding values, only the remaining 40% must be 

transferred or stored as error bits. 

Lastly, NARMAX systems can also replace known but 

computationally intensive processes, as is commonly done 

with Taylor or Padé expansions, without requiring 

knowledge of the original functions. Embedded systems 

and real time low-latency applications with limited memory 

and computational resources benefit from sparse, thus light-

weight models such as NARMAX expansions. 

This paper introduces a new algorithm to the black-box 

fitting symbolic regression algorithm class named “Forward 

Orthogonal Least Squares Regression” (called FOrLSR, 

FROLS, FOLSR or OFR depending on the sources).  

FOrLSR algorithms are dictionary-based symbolic least-

squares regressions, as they generate (or are provided with) 

a “dictionary” of regressors to find the shortest possible 

regressor sequence describing the system with the desired 

precision. Common expansions such as Taylor, Padé, 

Fourier, RBF and Wavelet are equivalent to fitting the 

entirety (being non-sparse expansions) of a dictionary 

containing only one single function type (polynomials, 

oscillations, hyper-ellipsoids, etc). The FOrLSR’s 

dictionary, however, can contain any number of arbitrary 

spatial and temporal functions and combinations thereof, of 

which the FOrLSR selects only the most relevant to 

describe the system. 

A further advantage is the least squares framework 

ensuring optimal fitting for arbitrarily large subspaces, 

whereas Taylor- and Padé-like expansions are only optimal 

at their expansion point and can quickly drift off. 

The remaining paper is organized as follows: Section II 

presents the rFOrLSR, while the new arborescent structure 

is introduced in Section III. Section IV provides examples 

and benchmarks, while Section V concludes the paper. 

Appendix 1 illustrates the used notation; Appendix 2 

proves equation (2)’s correctness and Appendix 3 holds 

Section IV-C’s rational expansion’s coefficient. 

 
II. THE RECURSIVE FORWARD ORTHOGONAL LEAST 

SQUARES REGRESSION (rFOrLSR) 

From a linear algebra perspective, expansions are projec-

tions into function spaces with basis vector sequences 

(BVS) depending on the used expansion type (monomials 

for Taylor, oscillations for Fourier, etc), whose potentially 

infinite dimension depends on the expansion order. Being a 

model structure detection algorithm, the FOrLSR searches 

the BVS representing the given system response vector �̲� 

with the smallest mean squared error and the shortest BVS 

to ensure model sparsity [30]. This optimal BVS being 

system-dependent, thus unknown, a large dictionary 𝐷C 

containing 𝑛C candidate basis vectors (=regressors) is itera-

tively scanned to extract the best fitting regressor to add it 

to the BVS (regression). Thus, the optimal point (regression 

coefficients �̲̂�) in an optimal subspace (spanned by the 

BVS) of 𝐷C’s vectors is searched for. To make this opera-

tion computable, one evaluates the regressors on a zero-

mean uniform white noise input sequence �̲� of length 𝑝. 

The regressors �̲�𝑚 can then be any non-linear transfor-

mations and combinations of the system input �̲�, output �̲� 

or internal system noise �̲�. This corresponds to working in a 

vector-space spanned by finite dimensional observation 

vectors rather than a Hilbert space of functions. This reduc-

es the symbolic regression problem to the usual least 

squares regression, solved with a Gram-Schmidt-based QR-

like decomposition augmented with a similarity metric 

iteratively selecting the most similar basis vector to the 

desired system’s output �̲� ∈ ℝ𝑝 (see [30]). 

Thus, the FOrLSR acts as a linear equation system solver 

(LESS) decomposing 𝐷C into an orthogonal and an upper 

unitriangular matrix, both of lower dimensions, yielding a 

solution vector �̲̂� containing the original system solution’s 

non-zero entries. 

The Gram-Schmidt-based orthogonalization allows hav-

ing a forward regression not required to estimate model 

parameters at each iteration when adding a regressor to the 

BVS [30], [31]. Thus, the FOrLSR re-orthogonalizes the 

regressor observation dictionary 𝐷C ≔ [�̲�𝑗]
𝑗=1

𝑛C
∈ ℝ𝑝×𝑛C  

with respect to all vectors (regressors) �̲�𝑗 previously added 

to the BVS (model). The orthogonalization is the algo-

rithm’s most expensive operation, 𝑝 and 𝑛C being usually 

very large. It is, thus, of interest to vectorize it and make it 

recursive. 

A. THE ORTHONORMAL ANNIHILATOR MATRIX 

A single vector �̲�𝑚’s orthogonalization with respect to a set 

containing 𝑠 orthogonal vectors {�̲�𝑗}
𝑗=1

𝑠
 is performed by 

�̲�𝑚 − ∑
⟨�̲�𝑗  ;  �̲�𝑚⟩

‖�̲�𝑗‖
2

2 �̲�𝑗

𝑠

𝑗=1

 

 

Proposition: The following orthonormal annihilator matrix 

𝑃A, projecting 𝐷C onto 𝛹 ≔ [�̲�𝑗]
𝑗=1

𝑠
’s orthogonal comple-

ment by left multiplication, is equivalent to the FOrLSR’s 

nested for-loop iterating over all dictionary terms �̲�𝑚 and 

all 𝑠 already selected orthogonal regressors �̲�𝑗: 

[EDITED]        (1) 

 

Proof: [EDITED] 
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𝑃A, as defined in equation (1), speeds up orthogonalization 

by allowing parallelized computation on GPU or distributed 

systems, and BLAS-like optimizations on CPU.  

B. THE RECURSIVE ORTHONORMAL ANNIHILATOR 
MATRIX 

To reduce the computational burden, the orthogonalization 

in equation (1) is made recursive by storing and updating 

the orthogonalized 𝐷C, defined as Ω.  

 

[EDITED] 

 

[EDITED] (2) 

with [ω̲𝑗]
𝑗∈{𝑘}𝑘=1

|𝑈|−𝑠+2
∖ℓ

 being Ω from the previous iteration 𝑠 

without the ℓ-th column (ω̲ℓ). Appendix 2 proves that (2) 

corresponds to a multiplication with 𝑃A of the correct terms. 

Projections on the selected ω̲ℓ, being taken from 𝛹’s or-

thogonal complement, are guaranteed to not reintroduce 

information to any �̲�𝑚 previously eliminated by any �̲�𝑗. 

The recursive orthogonalization in equation (2) reduces 

the algorithms’ complexity from 𝒪(𝑝 × 𝑛C × 𝑛r
2) to 

𝒪(𝑝 × 𝑛C × 𝑛r) with 𝑛r the BVS’s cardinality (number of 

regressors in the model), as Ω is only orthogonalized with 

respect to the new regressor ω̲ℓ at every iteration 𝑠 rather 

than with respect to the entire BVS. 

C. IMPOSING REGRESSORS 

Starting the BVS with an imposed vector-set 𝐷S ≔ {�̲̃�𝑗}
𝑗=1

𝑛S
  

of pre-selected regressors allows to incorporate user exper-

tise and construct arborescences, as explained in Section 

III. Further applications are simplifying the variable selec-

tion algorithm presented in [32], which should be run as 

dictionary sparsification step before the FOrLSR. It elimi-

nates unfit variables and upper-bounds the maximum lags 

to limit the number of terms passed through the monomial 

expansion and non-linearities, which strongly reduces the 

dictionary size, resulting in faster regressions (see Section 

IV-A). Imposing regressors is also necessary for the pro-

posed arborescence’s validation procedure (see Sections 

III-A and III-B). 

Regressors are imposed by [EDITED] 

D. THE RECURSIVE FOrLSR ALGORITHM (rFOrLSR) 

The (r)FOrLSR properly functions under following condi-

tions: Importantly, �̲� and all regressors in 𝐷C and 𝐷S must 

be centered, such that matrix multiplications correspond to 

correlations rather than cosine similarities. The input �̲� 

must also be centered before being passed through the sys-

tem of interest. Further, �̲�𝑖 ≠ �̲�𝑗 , ∀𝑖 ≠ 𝑗 as the FOrLSR 

often selects all equal regressors, once one of them is se-

lected. Finally, all regressor entries must be independent of 

all model parameters: 𝜕𝜃𝑗
𝜑𝑖[𝑘] = 0, ∀𝑖,𝑗=1

𝑛𝑟 , ∀𝑘=1
𝑝

 [30]. 

The rFOrLSR’s inputs are: The system output �̲� ∈ ℝ𝑝, the 

imposed and candidate regressor dictionaries, respectively  

𝐷S ∈ ℝ𝑝×𝑛S  and 𝐷C ∈ ℝ𝑝×𝑛C. Further, the index set 𝑈 de-

termines which regressors are accessible to the rFOrLSR, 

which simplifies the arborescence, see Section III. Thus, for 

the rFOrLSR |𝑈| =̂ 𝑛C and [�̲�𝑚]
𝑚∈𝑈

=̂ 𝐷C. As in the clas-

sical FOrLSR [30], 𝜌 is the maximum unexplained relative 

output variance threshold. Higher thresholds lead to BVS 

with fewer terms as more error is tolerated [30]. The integer 

[MaxTerms] and the Boolean [Abort] allow the pruning 

mechanism described in Section III-B. [MaxTerms] also 

allows limiting expansions to a particular order (= model 

length, number of terms) as is usual for expansion. Finally, 

the Boolean [Solve] determines if the regression coeffi-

cients �̲̂� are to be estimated and the ordered index set 𝓛𝑰 is 

needed for the arborescence’s OOIT-abortion described in 

sections III-B and III-C.  

The rFOrLSR operates with the same data structures as 

the FOrLSR [30]: 𝑊 is an ordered set containing the or-

thogonal regressor’s regression coefficients, being static 

once computed due to orthogonality. ℰ is an ordered set 

containing each term’s Error Reduction Ratio (ERR), which 

measures each term’s contribution to the regression’s ex-

plained empiric variance 𝑠�̲�
2 [30]. It corresponds to the 

squared correlation between the orthogonalized regressor 

�̲�𝑗 and the system output �̲�, assuming both are zero-mean. 

The upper unitriangular matrix 𝐴 contains the projection 

coefficients of the non-orthogonal selected regressors �̲�𝑚 

onto the selected and orthogonalized regressors �̲�𝑗.  
 

ALGORITHM 1: The rFOrLSR algorithm 
 

[EDITED] (pseudo code) 

[EDITED] (explanations) 

The (r)FOrLSR functions as a lossy sparsifying QR-like 

equation solver, where 𝑀�̲� = �̲� → 𝑅�̲� = 𝑄𝑇�̲� becomes 

(𝐷S ⫲ 𝐷C)�̲̂� = �̲� → 𝐴�̲̂� = Ψn
𝑇�̲� = 𝑊. It retains a selection 

of 𝐷C’s columns to minimize 𝛹’s, 𝐴’s and �̲̂�’s dimensions 

while keeping the mean squared error increase with respect 

to �̲� minimal [30]. Equivalently, �̲̂� remains in ℝ𝑛C+𝑛S  and 

is sparse, having non-zero entries at indices in ℒ. 𝛹’s col-

umns span an orthogonal basis of a subspace of 𝐷S ⫲ 𝐷C, 

where 𝑊 is the least squares optimal representation of �̲�. 

 
III. THE ARBORESCENT ORTHOGONAL LEAST 

SQUARES REGRESSION (AOrLSR) 

The (r)FOrLSR is a greedy algorithm since at each iteration 

the orthogonalized regressor the most similar to the system 

output is added to the model [30]-[33]. Thus, the algorithm 

takes the locally best choice, maximizing the increase in 

explained output variance without considering the global 

search space, which could contain shorter and/or lower 

validation error BVSs [33]. A common problem is the se-

lection of a highly correlated but otherwise suboptimal first 

term, often 𝑦[𝑘 − 1], resembling the most the output 𝑦[𝑘] 
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[31], [33], such that all following regressors are selected to 

compensate for that error, yielding a suboptimal model. 

This can, however, happen at any regression iteration [33]. 

Guo et al. [31] propose the iFOrLSR, performing a first 

regression and starting a new regression with each selected 

regressor. This mitigates greediness by forcing the FOrLSR 

to start in different search space locations to potentially find 

better BVS [31]. Traversing the entire search space would 

require 𝒪(𝑛C!) regressions and thus the greedy similarity-

metric-based selection remains necessary [31]. Equivalent-

ly, finding an arbitrarily determined linear equation sys-

tem’s sparsest solution vector is considered NP-hard [34]. 

Guo et al. [31] visualize the iFOrLSR as a search tree 

having regressors as nodes and edges connecting two suc-

cessively added terms to the BVS. They note the potential 

usefulness of retriggering regressions imposing more terms, 

which, however, becomes quickly computationally intrac-

table and they provide no method for doing so. Both points 

are addressed below. 

A. THE ARBORESCENCE CONSTRUCTION 

This section generalizes the iFOrLSR’s [31] arborescence 

traversal mitigating greediness and increasing the solution 

space exploration. Imposing regressors from later in the 

BVS while dropping earlier ones allows the arborescence to 

eliminate regressors at every level and replace them with 

new ones. Thus, deeper arborescences have higher proba-

bility of finding better BVSs (models). The AOrLSR ex-

plores more search space than an equivalent forward-

backward regression (as in [33]), as it explores new combi-

nations rather than just eliminating poor regressors from the 

current BVS. 

 

[EDITED] 

Once all nodes are processed, the shortest (for sparsity) 

BVSs are compared with user-defined metrics on a valida-

tion set of input sequences . The validation procedure, tak-

ing an arbitrary data-structure as input, outputs a scalar 

fitness measure, which the AOrLSR uses to select the best 

performing BVS. This allows use-case specific metrics to 

process arbitrary data-structures (see Section III-C). 

B. THE SPARSIFICATION THEOREMS 

Spanning a deep arborescence is computationally intracta-

ble due to the regression numbers’ combinatorial growth 

(see Section IV-B). This section provides an observation 

yielding four sparsification theorems, four corollaries, one 

pruning mechanism and upper-bounds guaranteeing the 

algorithm’s termination. 

The sparsification theorems avoid computing nodes (re-

gressions) whose results are predictable (LUT, OOIT, (gen-

eralized) PFCT) or predictably rejected by the validation 

method (ADTT and PM), which greatly sparsifies the arbo-

rescence without losing potential solution BVS.  

 

Observation: [EDITED] 

Predictable Free Choice Theorem (PFCT):  

[EDITED] 

Proof: [EDITED] 

 

Leaf Uniqueness Theorem (LUT):  

[EDITED] 

Proof: [EDITED] 

 

Orthogonalization Order Independence Theorem 

(OOIT): [EDITED] 

Proof: [EDITED] 

Despite the chosen vectors �̲�𝑖 remaining identical, the or-

thogonalized vectors �̲�𝑖 and the QR-like decomposition’s 

upper unitriangular matrix 𝐴 change depending on vector 

ordering. The order being irrelevant, so is the sorting crite-

rion, if consistent throughout the AOrLSR.  

 

Corollary (Generalized OOIT):  

[EDITED] 

Example: [EDITED] 

 

Corollary (Generalized PFCT):  

[EDITED] 

The Generalized PFCT reduces the arborescence’s compu-

tational growth from permutational to combinatorial, which 

is a factorial order smaller. 

[EDITED] 

Unique Regressions Upper-bound Theorem:  

[EDITED] 

Proof: [EDITED] 

Figure 1: [EDITED] 

Arborescence depth truncation theorem (ADTT): 

[EDITED] 

Proof: [EDITED] 

Corollary (Arborescence depth upper bound):  

[EDITED] 

Proof: [EDITED] 

 

Corollary (Guaranteed Termination):  

[EDITED] 

Proof: [EDITED] 

Pruning mechanism (PM): [EDITED] 

C. THE AOrLSR ALGORITHM 

The AOrLSR algorithm’s inputs are the following: The 

data-structures �̲�, 𝐷S and 𝐷C are the same as for the 

rFOrLSR. The zero-based [MaxDepth] determines the arbo-



 

VOLUME XX, 2023  

rescence depth (total number of levels). 𝜌1 is the root re-

gression’s ERR threshold, which, as described in [31], can 

be set higher than the desired model precision threshold 𝜌2 

to span a horizontally larger arborescence by having a long-

er root BVS. Note that Guo et al. [31] use 𝜌2 as offset for 

𝜌1, while here those are separate thresholds for simplicity. 

ℱ and 𝒱 correspond respectively to the validation function 

and data, which are application and implementation de-

pendent (see explanations of step 7 below).  

 

[EDITED] 

 
ALGORITHM 2: The AOrLSR algorithm 
 

[EDITED] (pseudo-code) 

[EDITED] (explanations) 

The last step (7) performs validation and model selection 

once the arborescence is traversed and returns the regres-

sion of the minimum length BVS with the highest valida-

tion score. The validation score is application dependent 

and should test important model characteristics. To illus-

trate, the validation could, additionally to the ERR, operate 

in the frequency domain and also penalize models based on 

their computational expense. The validation can also reject 

models based on arbitrary criteria like using negative or too 

large regression coefficients. 

From the sparsifying linear equation system solver per-

spective, the AOrLSR imposes |ℒ𝐼| non-zero entries in the 

solution vector and continues the iterative solving to find 

sparser solutions, while all theorems apply equally. 

D. SUPPLEMENTARY REMARKS 

The early abortion functionality, being offered by the 

rFOrLSR to support the AOrLSR’s pruning mechanism, 

allows to set a maximum number of non-zero terms in the 

solution vector in a LESS context. By setting 𝜌 = 0, the 

rFOrLSR runs until [MaxDepth] ≤ 𝑛C is reached. The 

rFOrLSR-based LESS can thus be used either with an error 

threshold or with a determined number of non-zero entries.  

The arborescence traversal can be performed by a depth-

first search (DFS), which seems attractive as from one node 

to its child or sibling only one imposed term must be 

changed, avoiding many computations. However, the 

rFOrLSR cannot be used since un-orthogonalizing the dic-

tionary (𝐷C/Ω) w.r.t. a regressor is impossible and would 

require storing copies quickly overflowing RAM. This also 

trades imposing terms once at regression start, the cheapest 

operation, against re-orthogonalizing 𝐷C at every iteration, 

being the most expensive operation.  

The AOrLSR is a meta-algorithm triggering the 

(r)FOrLSR, which does not prevent the use of variations, 

such as for example the Ultra-orthogonal FOrLSR [35] or 

an information criterion-based FOrLSR [36], [37]. Differ-

ent similarity metrics and data augmentation remain com-

patible with the (r)FOrLSR with some adjustments. 

 

IV. EXAMPLES 

Section IV-A and IV-B illustrate the speed improvement 

brought by the rFOrLSR and the sparsification theorems 

and corollaries. Section IV-C illustrates the ability to create 

nested expansions and Section IV-D displays both algo-

rithms use as Linear Equation System Solver. 

For Sections IV-B and IV-C, the results slightly differ de-

pending on the white noise input sequence �̲�, thus the most 

representative of multiple runs was taken. 

A. EXECUTION SPEED 

This example compares the rFOrLSR to a modified 

FOrLSR implementation having a similar structure and 

storing the same variables for a fair comparison. The fitted 

system and dictionary content are irrelevant, the execution 

speed per regressor being independent of the vectors’ con-

tent. Table I (CPU benchmark) and Table II (GPU bench-

mark) illustrate the fitting durations for 𝑝 ≔ 2′000 in sec-

onds averaged over 50 passes, w.r.t. dictionary size 𝑛C and 

number of regressors (BVS length) 𝑛r. The rows compare 

the rFOrLSR’s (top numbers) linear complexity in 𝑛r to the 

FOrLSR quadratic complexity.  
 
TABLE 1: rFOrLSR (top) and FOrLSR (bottom) fitting durations in sec-
onds w.r.t. dictionary size 𝒏𝑪 and BVS length (number of fitted regres-

sors) 𝒏𝒓 for vector length 𝒑 ≔ 𝟐′𝟎𝟎𝟎 on CPU. The rFOrLSR takes a 
fraction of the FOrLSR fitting times in all cases. 

 
Table 1 𝑛𝑐 = 100 𝑛𝑐 = 1𝑘 𝑛𝑐 = 10𝑘 𝑛𝑐 = 100𝑘 

𝑛𝑟 = 5 0.009 

0.047 

0.072 

0.433 

0.752 

3.909 

9.328 

38.567 

𝑛𝑟 = 10 0.019 

0.162 

0.155 

1.390 

1.594 

13.249 

19.488 

131.789 

𝑛𝑟 = 20 0.038 

0.518 

0.316 

5.351 

3.306 

52.879 

39.881 

515.110 

𝑛𝑟 = 30 0.055 

1.080 

0.500 

11.754 

4.948 

111.357 

60.834 

1085.402 

𝑛𝑟 = 40 0.067 

1.738 

0.669 

19.489 

6.592 

188.725 

80.615 

1872.121 

 
TABLE 2: Same as Table 2 but benchmarked on GPU.  
 

Table 2 𝑛𝑐 = 100 𝑛𝑐 = 1𝑘 𝑛𝑐 = 10𝑘 𝑛𝑐 = 100𝑘 

𝑛𝑟 = 5 0.005 
0.190 

0.018 
1.871 

0.037 
19.574 

0.452 
200.086 

𝑛𝑟 = 10 0.011 

0.693 

0.039 

5.729 

0.078 

59.242 

0.935 

595.988 

𝑛𝑟 = 20 0.023 
2.001 

0.077 
20.254 

0.154 
195.572 

1.902 
1930.037 

𝑛𝑟 = 30 0.033 

3.431 

0.119 

39.639 

0.228 

407.852 

2.876 

4067.117 

𝑛𝑟 = 40 0.038 
5.155 

0.158 
67.707 

0.298 
699.954 

3.851 
6886.958 

The above processing times are based on the paper’s refer-

ence implementation, being uncompiled single-thread py-

thon using PyTorch, which should be considered as approx-

imate upper bound compared to pre-compiled, multi-

threaded or distributed implementations. The used comput-

er has an AMD Ryzen 8-Core CPU with 3.3GHz/4.3GHz 

Turbo and an NVIDIA RTX 3080 (Laptop) GPU. 

Table 1 and 2 display the rFOrLSR outperforming the 

FOrLSR on CPU and GPU for all 𝑛C and 𝑛r. This is mainly 

due to the linear (rFOrLSR) vs quadratic complexity in 𝑛r 
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but also the increased CPU and GPU optimizations which 

can be performed on larger memory-contiguous data-

structures (better caching, SIMD, GPU-parallelization, etc). 

The FOrLSR performs better on CPU, the algorithm com-

prising many scalar or small vector operations, which are 

slow on GPU. The rFOrLSR, however, performs much 

better on GPU due to the large matrix operations. 

B. SPARSIFICATION 

The following examples illustrate the sparsification per-

formed by Section IV-B’s theorems, corollaries and the 

pruning mechanism. “Naïve” stands for the total number of 

nodes in the arborescence per level, all of which require 

evaluation without the theorems. “LUT” represents nodes 

requiring computation applying only LUT (a), and 

“GPFCT” applies the OOIT-generalized PFCT corollary of 

which LUT is a special case. “Aborted” counts the nodes 

whose computation is exited due to the OOIT-prediction 

performed during the regression. “Ortho%” counts the 

percentage of orthogonalizations necessary to traverse the 

arborescence with the theorems compared to a naïve tra-

versal. This is representative of the general computation 

expense reduction, orthogonalizations being by several 

orders of magnitude the most expensive operation. All 

mentioned numbers are cumulative sums, being the statis-

tics for the entire arborescence up to each level. “PM” 

counts the aborted regressions if the respective levels were 

the final one. “MinLen” represents the shortest known BVS 

after traversing that level. 

Only the last level takes into consideration the orthogo-

nalizations prevented by the leaf-pruning mechanism PM in 

“Ortho%”. Thus, arborescences terminated at higher levels 

will have slightly lower “Ortho%” numbers than indicated. 

The following examples represent both extremes in 

(r)FOrLSR fitting difficulty and the repercussions on the 

arborescence’s usefulness and sparsity. Furthermore, sys-

tem 1 and 2 were chosen to be severely non-linear systems 

to illustrate the expression complexity the (r)FOrLSR and 

AOrLSR are capable of correctly retrieving. 

The ERR tolerances are set to 𝜌1 ≔ 𝜌2 ≔ 1e − 4, such that 

0.01% of the signal �̲�’s empiric variance can be left unex-

plained by the model for 𝑝 ≔ 2′000. 

Let system 1 be:  

 

𝑦[𝑘] ≔ 0.2𝑥[𝑘] + 0.3𝑥3[𝑘 − 1] + 0.7|𝑥[𝑘 − 2]𝑥2[𝑘 − 1]| 

          + 0.5𝑒𝑥[𝑘−3]𝑥[𝑘−2] − 0.5 cos(𝑦[𝑘 − 1]𝑥[𝑘 − 2]) 
          − 0.4|𝑥[𝑘 − 1]𝑦2[𝑘 − 2]| − 0.4𝑦3[𝑘 − 3] 

The required dictionary is:  

 

  𝐷C ≔ {𝑓𝑖 (∏ 𝜑
𝑗

𝑎𝑗11
𝑗=0 ) |𝑎𝑗 ∈ {𝑞}𝑞=0

3 , |∑ 𝑎𝑗
11
𝑗=1 | ≤ 3, ∀𝑗}  (4) 

with 𝜑𝑗 ∈ {𝑥[𝑘 − 𝑗]}𝑗=0
5 ∪ {𝑦[𝑘 − 𝑗]}𝑗=1

5  in addition to  𝑓𝑖 ∈

{𝑥, |𝑥|, 𝑒𝑥, cos(𝑥)}. Thus, 𝐷C contains delays up to 5 

timesteps for third-order monomial expansions of 𝑥, 𝑦 

passed through the above functions, such that |𝐷C| ≜ 𝑛C =

1441.  

 
TABLE 3: Arborescence sparsification demonstration per level 𝑳 (col-

umns) via the total nodes, the remaining nodes after applying respec-
tively LUT, then OOIT-augmented PFCT. Below are the number of OOIT 
aborted regressions, the number of regressions aborted by the pruning 
mechanism and the relative number of orthogonalizations. The last row 
contains the shortest known sequence length after that level. 
 
Table 3 L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7 

Naïve 1 8 50 276 1’326 5’396 18’348 51’668 

LUT 1 7 42 226 1’050 4’070 12’952 33’320 

GPFCT 1 7 22 50 104 196 305 386 

Aborted 0 5 18 43 89 159 246 306 

PM 0 0 2 10 40 86 108 81 

Ortho% 100 55.55 20.37 6.80 2.62 1.08 0.43 0.21 

MinLen 7 7 7 7 7 7 7 7 

 

For most input sequences, System 1 is correctly retrieved 

by the FOrLSR on its own (= root), thus, the minimum 

length (MinLen) remains constant. Thus, further arbores-

cence levels are strongly redundant, as recognized by 

“GPFCT”, which together prevent computing most nodes. 

Using all proposed theorems, the arborescence is traversed 

by computing only 
386

51668
≈ 0.47% of all nodes before exit-

ing the search due to ADTT. Additionally, 
306

386
≈ 79.3% 

were OOIT-aborted and the pruning mechanism aborted 81 

regressions, meaning that the arborescence was traversed 

with about 0.21% of the naïve computations. The 

rFOrLSR’s further reduces computations to about  
0.039

1.39
⋅

100 ≈ 2.8% (GPU rFOrLSR / CPU FOrLSR from Table 

1&2 respectively at 𝑛𝑟 = 10, 𝑛C = 1𝑘), yielding a total 

computation time of roughly 5.88e-3% of the CPU (best 

time for the FOrLSR) FOrLSR-based naïve arborescence. 

 

Let system 2 be rational: 𝑦[𝑘] ≔
𝑁

𝐷
   with   

𝑁 ≔ 0.6|𝑥[𝑘]| − 0.35𝑥3[𝑘] − 0.3𝑥[𝑘 − 1]𝑦[𝑘 − 2]  
+0.1|𝑦[𝑘 − 1]| 

 

𝐷 ≔ 1 − 0.4|𝑥[𝑘]| + 0.3|𝑥[𝑘 − 1]𝑥[𝑘]| − 0.2𝑥3[𝑘 − 1]  
      + 0.3𝑦[𝑘 − 1]𝑥[𝑘 − 2] 

The required dictionary is:  

 

 𝐷C ≔ {𝑓𝑖 (∏ 𝜑
𝑗

𝑎𝑗11
𝑗=0 ) |𝑎𝑗 ∈ {𝑞}𝑞=0

3 , |∑ 𝑎𝑗
11
𝑗=1 | ≤ 3, ∀𝑗} 

 

with 𝜑𝑗 as above, with however 𝑓𝑖 ∈ {𝑥, |𝑥|, −𝑦𝑥, −𝑦|𝑥|}, 

as the denominator terms are created by multiplying the 

regressors with −𝑦 to linearize the expression [38]: 

𝑦[𝑘] =
𝐴

1+𝐵
⟺ 𝑦[𝑘](1 + 𝐵) = 𝐴 ⟺ 𝑦[𝑘] = 𝐴 − 𝑦[𝑘]𝐵  

 

where 𝐴 and 𝐵 are arbitrary linear combinations. 
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TABLE 4: Same content as Table 3 with System 2’s data 
 
Table 4 L=0 L=1 L=2 L=3 L=4 L=5 L=6 

Naïve 1 23 482 9’785 192’022 3.65M 67.77M 

LUT 1 22 459 9’303 182’237 3.46M 64.12M 

GPFCT 1 22 312 3’786 41’719 428’159 4.09M 

Aborted 0 9 167 2’279 27’448 298’785 2.97M 

PM 0 12 285 3’463 37’901 386’429 3.67M 

Ortho% 100 67.23 37.02 19.13 9.73 4.89 2.14 

MinLen 22 15 10 9 8 8 8 

 
FIGURE 2: Illustration of the arborescence convergence via the statisti-
cal properties of 150 different input random sequences �̲� for system 2. 
The correct solution (blue line) has 8 regressors and the Max/Min, Mean, 
standard deviation (Std) and range illustrate the initial poor (r)FOrLSR 
performance progressively corrected by the arborescence. 
 

System 2 is so complex that the (r)FOrLSR on its own (root 

regression) performs very poorly as illustrated in the exam-

ple run (Table 4) and in general (Figure 2). Depending on 

the used input noise sequence, the root’s BVS length is 

between 14 and 49 (instead of 8) and the arborescence must 

arrive at L=3-5 to retrieve the correct equation.  

System 2’s arborescence levels yield progressively short-

er BVSs until the correct expression is retrieved, illustrating 

the gain of spanning large search spaces. Furthermore, for 

complex systems, the (r)FOrLSR results dependent strongly 

on the input sequence, which the AOrLSR stabilizes by 

design as illustrated in Figure 2, where the range and stand-

ard deviation greatly decrease at each level. Only 18.67% 

of the 150 runs find the correct solution by level 3, 72% by 

level 4 and all by level 5. 

The arborescence traversal in Table 4 requires computing 

2.14% of all orthogonalizations and the pruning mecha-

nism aborted 
3.67M

4.09
≈ 89.73% of all nodes. The rFOrLSR 

reduces the remaining computations to a about 
0.119

11.754
⋅

100 ≈ 1%, (Table 1&2 respectively at 𝑛𝑟 = 30, 𝑛C = 1𝑘) 

yielding a total computation time of roughly 0.021% of the 

CPU FOrLSR-based naïve arborescence. 

The number of levels decreasing the BVS length depends 

on the fitted system and the input sequence. Empirically, 

for difficult to fit systems, BVS lengths decrease in the first 

2-6 levels with mostly the largest decrease after the root. 

Some systems lose most of their regressors, while others 

lose almost none. For easily fitted systems such as system 

1, the arborescence has few nodes and is very sparse which 

minimizes its cost. Indeed, for linear systems such as FIRs 

or IIRs, the total number of nodes is often a few hundreds. 

The deeper the arborescence level, the lower the percentage 

of computed nodes and the higher the abortion rate. 

Importantly, two or three consecutive levels can yield 

identical shortest known BVS lengths while being followed 

by a level yielding a shorter one. Thus, stopping the arbo-

rescence after a level fails to find a shorter BVS is a sub-

optimal stopping criterion. 

Even if no shorter BVS is discovered, further levels re-

main of interest as they often provide supplementary same 

length candidate BVSs for the validation procedure to 

choose from, to decrease the user-defined error metric.  

C. ADVANCED EXPANSIONS / SYMBOLIC FITTING 

As demonstrated by system 2, the requirement that the 

NARMAX expansions sparsely fitted by the AOrLSR be 

linear-in-the-parameter is quite loose. The (r)FOrLSR’s 

advantage over other methods is that, being based on vector 

similarity metrics, the vectors’ content is not subject to 

common fitting constraints such as differentiability, conti-

nuity or system causality. 

This example illustrates an expansion in |𝑥|𝑗 inside a ra-

tional non-linear expression designed to emulate tanh(𝑥) 

for 𝑥 ∈ ℝ. The constraints are that the approximation be a 

single expression, converge to ±1 and have a small maxi-

mum error around the origin, which are hard to achieve 

with Padé expansions or rational systems such as system 2.  

The proposed approximation has the form:  

𝑦 = sgn(𝑥) (1 −
1

1 + |𝑥|𝐴
) 

with 𝐴 ≔ ∑ 𝜃𝑗|𝑥|𝑗
𝑗∈𝐽  and 𝐽 ⊂ ℕ0, which linearizes to 

−sgn(𝑥)𝑦 + 1 = (sgn(𝑥)𝑦 − 1)|𝑥|𝐴 

Yielding  

𝐷C ≔ {(sgn(𝑥)𝑦 − 1)|𝑥|𝑗| 𝑗 ∈ ℕ∗} 

 

This example’s input sequence �̲� is a zero-mean uniform 

noise of length 𝑝 ≔ 15′000, with powers in 𝐽 ≔ {𝑖}𝑖=1
15 , 

yielding a dictionary of 15 terms. The optimal noise ampli-

tude was determined by a grid search in [2,4] for each ex-

pansion order. The AOrLSR’s validation function was an 

𝐿∞ norm on the equidistantly sampled interval of [−8,8], to 

keep the shortest BVS with the smallest maximal deviation. 
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The fitting errors of the respectively 5, 6 and 7 term sig-

moid expansions are illustrated in Figure 3 below, while the 

coefficients and input noise amplitudes are provided in 

Appendix 3.  
 
FIGURE 3: The presented rational NARMAX expansion’s fitting error 
(tanh(x) – 5-7 order expansions) per order (number of terms in the 
powers of absolute values in A) with tuples containing the respective 
maximal deviation coordinates of the two tallest peaks. 
 

A depth 3 arborescence finds the optimal BVSs for all three 

expansion orders. Its traversal is sparser than computing 

each possible regressor combination of which there are 𝑛𝐶𝑘 

(with 𝑛𝐶𝑘 the combinatorial “from n choose k” operator). 

Although level 1 and 2 suffice to find a minimum length 

BVS, the additional level finds lower error BVS. 

For the 5th order expansion, only 80 regressions of 

15𝐶5 = 3003 (2.66%) are computed of which 36 (45%) 

are early aborted. For the 6th order expansion, 100/5005 ≈
1.99% of all regressions are computed of which 60 (60%) 

are early aborted. For the 7th order expansion, 120/6435 ≈
1.86% of all regressions are computed, of which 82 

(68.3%) are early aborted. 

D. SPARSIFYING LINEAR EQUATION SYSTEM SOLVER 

As mentioned in sections II and II-D, the (r)FOrLSR and 

the AOrLSR are, on an abstract level, linear equation sys-

tem solvers, maximizing the solution-vector sparsity by 

choosing the most relevant LHS columns, while minimiz-

ing the mean squared error with respect to the RHS �̲� [30]. 

The LHS is 𝑀 ≔ 𝐷S ⫲ 𝐷C, where 𝐷S allows to impose 

columns to the selection. 𝑀’s dimensions being arbitrary, 

the system can be under-, well- or over-determined. 

To illustrate, be the following system with 𝑝 ∈ ℕ∗: 

𝑀�̲� = �̲� ⟺
Δ

[

𝑚1,1 ⋯ 𝑚1,5

⋮ ⋱ ⋮
𝑚𝑝,1 ⋯ 𝑚𝑝,5

] [

𝑥1

⋮
𝑥5

] = [

𝑦1

⋮
𝑦𝑝

] 

The AOrLSR with a 1% error tolerance could yield ℒ =

{1,3} and �̲̂� ∈ ℝ|ℒ|=2, such that �̲� = [�̂�1, 0, �̂�2, 0, 0]
𝑇
, while 

a 0.1% tolerance could yield ℒ = {1,3,4} and �̲̂� ∈ ℝ|ℒ|=3, 

thus �̲� = [�̂�1, 0, �̂�2, �̂�3, 0]
𝑇
.  

The LES is thus reduced to [�̲�𝑗]
𝑗∈ℒ

�̲̂� = �̲�, with 𝛹 and 𝐴 

matching dimension orthogonal, and unitriangular matrices, 

as in a QR decomposition [30]. 

 
V. CONCLUSION 

This paper proposes the rFOrLSR (recursive forward or-

thogonal least squares regression), being a recursive matrix 

form of the FOrLSR [30], and the AOrLSR (arborescent 

orthogonal least squares regression), being a meta-

algorithm triggering the (r)FOrLSR to reduce the number of 

regressors used to describe the desired system. 

 

[EDITED] 

 

The rFOrLSR and the sparsification theorems allow span-

ning an otherwise computationally intractable arborescence 

which scans a much larger search space segment than the 

FOrLSR. This greatly increases the probability of finding 

the optimal (sparser, lower error or more complex) 

NARMAX expansion within the given dictionary. 

Thus, this paper lays the groundwork for future arbores-

cent (r)FOrLSR algorithms using further sparsification 

heuristics (search-tree branch pruning methods, regressor 

elimination based on MSE contribution, etc). 

The (r)FOrLSR / AOrLSR are also linear equation system 

solvers for arbitrarily determined systems which maximize 

solution sparsity and minimize mean square error.  

The first authors’ GPU-accelerated python AOrLSR li-

brary is available at https://github.com/Stee-T/rFOrLSR. 

Future research could go towards further sparsification 

theorems and heuristics and transforming current regressor 

selection and elimination procedures into arborescence 

pruning heuristics. Further, regularization methods keeping 

the solution vector entries small or imposing constraints 

like coefficient positivity could allow using the AOrLSR 

for problems requiring specific sparsifying linear solvers. 

Finally, the rich literature on external parameter support, 

such as [9], [39], [40], would allow modulating the expan-

sion’s parameters �̲̂� to model system changes. 

Further, the orthogonalization matrix 𝑃A will be used in 

the authors’ upcoming work to morph regressors to adapt to 

the current system via infinitesimal optimization. 
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APPENDIX 1 

This appendix describes the notation used throughout the 

paper. Vectors are denoted with underlined lower-case 

letters (�̲�), matrices and sets with uppercase letters (𝐴) and 

scalars with lower-case letters (𝑎). Set and tensor construc-

tors are {𝑎𝑗}
𝑗=1

𝑛
≔ {𝑎1, … , 𝑎𝑛}, [𝑎𝑗]

𝑗=1

𝑛
≔ [𝑎1, … , 𝑎𝑛] (row 

vectors) and [�̲�𝑗]
𝑗=1

𝑛
(matrices). They also support index 

sets: [�̲�𝑗]
𝑗∈𝑆

≜ [�̲�𝑠1
, . . . , �̲�𝑠|𝑆|

] with 𝑆 ≜ {𝑠𝑗}
𝑗=1

|𝑆|
 and |𝑆| the 

set cardinality. Be further [𝑎𝑗]
𝑗=1

𝑛,↓
≔ ([𝑎𝑗]

𝑗=1

𝑛
)

𝑇

 a vertical 

(↓) tensor constructor and the horizontal concatenation 

operator ⫲. For disambiguation, elementwise or broadcast-

ed tensor arithmetic operation symbols are in a circle such 

as �̲� ⊘ �̲� ≔ [𝑎𝑗/𝑏𝑗]
𝑗=1

dim(�̲�)=dim(�̲�),↓
, �̲� ⊘ 𝑏 ≔ [𝑎𝑗/𝑏]

𝑗=1

dim(�̲�),↓
 

and �̲�⦿𝑛 ≔ [𝑎𝑗
𝑛]

𝑗=1

dim(�̲�),↓
. Tensor slicing is denoted with 

vector indexation such as 𝐴[[𝑗]𝑗=1
𝑠 , 𝑠] ≔ [𝑎𝑗,𝑠]

𝑗=1

𝑠,↓
. Matrix 

columns are denoted by lower-casing the matrix name and 

adding their index such as ω̲𝑗 ∈ Ω and �̲�S,𝑗 ∈ 𝐷S. Set union 

and set differences are respectively denoted with A ∪ B and 

A ∖ B. 

 
APPENDIX 2 

This appendix proves that Equation (2)’s recursive form 

corresponds to the desired Gram-Schmidt orthogonalization 

or equivalently to a multiplication by the proposed or-

thonormal annihilator matrix in Equation (1). 

First, it must be proven that Ω(𝑠)’s columns always corre-

spond to those in [�̲�𝑚]
𝑚∈𝑈(𝑠) (A), and secondly that the 

correct operations are performed (B). 

Without loss of generality, this proof assumes 𝐷S = ∅. 

𝐷S ≠ ∅ only changes the number of terms in the orthogo-

nalization sum and the number of columns in 𝛹 and 𝛹n. 

Further, all indices (__(𝑠)) represent the data-structures’ 

state after respectively algorithm 1’s step 2.h) and 3.l). 

�̲�𝑠 are always orthogonal w.r.t. all previous �̲� , even if not 

directly taken from Ω. 

 

A) [EDITED] 

B) [EDITED] 

 
APPENDIX 3 

This appendix contains the respective expansions denomi-

nators, being the best results of multiple runs on different 

input random sequences. The expansions have the property 

that higher order terms have tendentially increasingly 

smaller coefficients, which increases the numerical stability 

around the origin. 

The optimal input noise sequence �̲�’s amplitude deter-

mined by a grid search is respectively 2.36, 2.51, and 2.45 

for the orders 5, 6, and 7. 
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