

VOLUME XX, 2022 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Arborescent Orthogonal Least Squares
Regression

for NARMAX-based Black-box Fitting

 Stéphane J.P.S. Thunus1, Julian Parker2, and Stefan Weinzierl1
 1Technische Universität Berlin – Audio Communication Group, Berlin, 10587, Germany

2Native Instruments, Berlin, 10997, Germany

Corresponding author: Stéphane Thunus (Stephane@Thunus.org).

ABSTRACT This paper proposes a linear algebra-based supervised machine learning algorithm for the sym-

bolic representation of arbitrarily non-linear and recursive systems. It introduces multiple extensions to the al-

gorithmic class of “Forward Orthogonal Least Squares Regressions” (FOrLSR), which performs dictionary-

based sparse symbolic regressions. The regression, being only provided with the system’s input and output,

performs variable combinations and non-linear transformations from a given dictionary of analytic expressions

and selects the optimal ones to represent the unknown system. This yields a “symbolic” system representation,

having the minimum number of terms to enforce sparsity, while keeping the highest possible precision. The

proposed algorithm restructures the FOrLSR to be in matrix form (for large scale GPU and BLAS-like optimi-

zations), recursive (to reduce the complexity from quadratic in model length to linear) and allows regressors to

be imposed (to include user expertise and perform tree-searches). Furthermore, the dictionary search is restruc-

tured into a breadth-first arborescence traversal kept sparse by four proposed theorems, corollaries and one

pruning mechanism, while adding a validation procedure for the final model selection. The arborescence scans

large search-space segments, significantly increasing the probability of finding an optimal system representa-

tion, while only computing a marginal fraction of the search-space. The regression and arborescence are solv-

ers for arbitrarily determined linear equation systems which maximize sparsity in the solution vectors.

INDEX TERMS Forward Orthogonal Least Squares Regression, Model Structure Detection, NARMAX,

Non-linear System Identification, Solution Sparsity Enforcing Linear Equation System Solver, Supervised

Machine Learning For Parameter Estimation, Symbolic Regression.

I. INTRODUCTION

The world becoming increasingly reliant on data-driven

decision-making, the need for robust algorithms capturing

intricate non-linear relationships has never been greater.

NARMAX stochastic processes (Non-linear Auto-

Regressive Moving Average with eXogenous inputs),

characterized by their ability to encapsulate linear and

nonlinear dependencies along with exogenous factors, offer

a powerful framework for tackling the challenges posed by

real-world stochastic phenomena. NARMAX models have

been used to model spatial, temporal and spatio-temporal

systems in the fields of for example space physics [1]-[3],

neurology [4]-[9], industrial processes (such as diesel

engine modeling [10], welding processes [11], hydrogen

fuel cells [12] and well operation [13]), 3D modelling [14],

genetics [15], marine ecosystem modelling [16], biology

[17], control theory [18]-[20], fault and damage detection in

many areas [21]-[25], economics [26], robotics [27], [28],

chaotic system modelling [29], etc.

NARMAX models are applied in the three main use-

cases: model identification, behavior prediction, and system

approximation.

In the model identification use-case, the system’s

symbolic representation itself is of interest for analysis or

compensation purposes. To illustrate, having an algebraic

representation of a non-linear distortion might allow to

trace it back to the component generating it for correction

or prevention. NARMAX models are of interest, yielding

interpretable and thus also verifiable [3], [25], [27] non-

linear equations consisting of arbitrary terms, as opposed to

VOLUME XX, 2023

for example artificial neural networks constituted of non-

interpretable coefficient matrices and non-linearities.

System behavior prediction allows, amongst other things, to

prevent the system from harming other components ([21]-

[25]) or compress its output for transmission or storage. To

illustrate, if a NARMAX model predicts 60% of the

temporal or spatial signal’s variance from past or

surrounding values, only the remaining 40% must be

transferred or stored as error bits.

Lastly, NARMAX systems can also replace known but

computationally intensive processes, as is commonly done

with Taylor or Padé expansions, without requiring

knowledge of the original functions. Embedded systems

and real time low-latency applications with limited memory

and computational resources benefit from sparse, thus light-

weight models such as NARMAX expansions.

This paper introduces a new algorithm to the black-box

fitting symbolic regression algorithm class named “Forward

Orthogonal Least Squares Regression” (called FOrLSR,

FROLS, FOLSR or OFR depending on the sources).

FOrLSR algorithms are dictionary-based symbolic least-

squares regressions, as they generate (or are provided with)

a “dictionary” of regressors to find the shortest possible

regressor sequence describing the system with the desired

precision. Common expansions such as Taylor, Padé,

Fourier, RBF and Wavelet are equivalent to fitting the

entirety (being non-sparse expansions) of a dictionary

containing only one single function type (polynomials,

oscillations, hyper-ellipsoids, etc). The FOrLSR’s

dictionary, however, can contain any number of arbitrary

spatial and temporal functions and combinations thereof, of

which the FOrLSR selects only the most relevant to

describe the system.

A further advantage is the least squares framework

ensuring optimal fitting for arbitrarily large subspaces,

whereas Taylor- and Padé-like expansions are only optimal

at their expansion point and can quickly drift off.

The remaining paper is organized as follows: Section II

presents the rFOrLSR, while the new arborescent structure

is introduced in Section III. Section IV provides examples

and benchmarks, while Section V concludes the paper.

Appendix 1 illustrates the used notation; Appendix 2

proves equation (2)’s correctness and Appendix 3 holds

Section IV-C’s rational expansion’s coefficient.

II. THE RECURSIVE FORWARD ORTHOGONAL LEAST

SQUARES REGRESSION (rFOrLSR)

From a linear algebra perspective, expansions are projec-

tions into function spaces with basis vector sequences

(BVS) depending on the used expansion type (monomials

for Taylor, oscillations for Fourier, etc), whose potentially

infinite dimension depends on the expansion order. Being a

model structure detection algorithm, the FOrLSR searches

the BVS representing the given system response vector �̲�

with the smallest mean squared error and the shortest BVS

to ensure model sparsity [30]. This optimal BVS being

system-dependent, thus unknown, a large dictionary 𝐷C

containing 𝑛C candidate basis vectors (=regressors) is itera-

tively scanned to extract the best fitting regressor to add it

to the BVS (regression). Thus, the optimal point (regression

coefficients �̲̂�) in an optimal subspace (spanned by the

BVS) of 𝐷C’s vectors is searched for. To make this opera-

tion computable, one evaluates the regressors on a zero-

mean uniform white noise input sequence �̲� of length 𝑝.

The regressors �̲�𝑚 can then be any non-linear transfor-

mations and combinations of the system input �̲�, output �̲�

or internal system noise �̲�. This corresponds to working in a

vector-space spanned by finite dimensional observation

vectors rather than a Hilbert space of functions. This reduc-

es the symbolic regression problem to the usual least

squares regression, solved with a Gram-Schmidt-based QR-

like decomposition augmented with a similarity metric

iteratively selecting the most similar basis vector to the

desired system’s output �̲� ∈ ℝ𝑝 (see [30]).

Thus, the FOrLSR acts as a linear equation system solver

(LESS) decomposing 𝐷C into an orthogonal and an upper

unitriangular matrix, both of lower dimensions, yielding a

solution vector �̲̂� containing the original system solution’s

non-zero entries.

The Gram-Schmidt-based orthogonalization allows hav-

ing a forward regression not required to estimate model

parameters at each iteration when adding a regressor to the

BVS [30], [31]. Thus, the FOrLSR re-orthogonalizes the

regressor observation dictionary 𝐷C ≔ [�̲�𝑗]
𝑗=1

𝑛C
∈ ℝ𝑝×𝑛C

with respect to all vectors (regressors) �̲�𝑗 previously added

to the BVS (model). The orthogonalization is the algo-

rithm’s most expensive operation, 𝑝 and 𝑛C being usually

very large. It is, thus, of interest to vectorize it and make it

recursive.

A. THE ORTHONORMAL ANNIHILATOR MATRIX

A single vector �̲�𝑚’s orthogonalization with respect to a set

containing 𝑠 orthogonal vectors {�̲�𝑗}
𝑗=1

𝑠
 is performed by

�̲�𝑚 − ∑
⟨�̲�𝑗 ; �̲�𝑚⟩

‖�̲�𝑗‖
2

2 �̲�𝑗

𝑠

𝑗=1

Proposition: The following orthonormal annihilator matrix

𝑃A, projecting 𝐷C onto 𝛹 ≔ [�̲�𝑗]
𝑗=1

𝑠
’s orthogonal comple-

ment by left multiplication, is equivalent to the FOrLSR’s

nested for-loop iterating over all dictionary terms �̲�𝑚 and

all 𝑠 already selected orthogonal regressors �̲�𝑗:

[EDITED] (1)

Proof: [EDITED]

VOLUME XX, 2023

𝑃A, as defined in equation (1), speeds up orthogonalization

by allowing parallelized computation on GPU or distributed

systems, and BLAS-like optimizations on CPU.

B. THE RECURSIVE ORTHONORMAL ANNIHILATOR
MATRIX

To reduce the computational burden, the orthogonalization

in equation (1) is made recursive by storing and updating

the orthogonalized 𝐷C, defined as Ω.

[EDITED]

[EDITED] (2)

with [ω̲𝑗]
𝑗∈{𝑘}𝑘=1

|𝑈|−𝑠+2
∖ℓ

 being Ω from the previous iteration 𝑠

without the ℓ-th column (ω̲ℓ). Appendix 2 proves that (2)

corresponds to a multiplication with 𝑃A of the correct terms.

Projections on the selected ω̲ℓ, being taken from 𝛹’s or-

thogonal complement, are guaranteed to not reintroduce

information to any �̲�𝑚 previously eliminated by any �̲�𝑗.

The recursive orthogonalization in equation (2) reduces

the algorithms’ complexity from 𝒪(𝑝 × 𝑛C × 𝑛r
2) to

𝒪(𝑝 × 𝑛C × 𝑛r) with 𝑛r the BVS’s cardinality (number of

regressors in the model), as Ω is only orthogonalized with

respect to the new regressor ω̲ℓ at every iteration 𝑠 rather

than with respect to the entire BVS.

C. IMPOSING REGRESSORS

Starting the BVS with an imposed vector-set 𝐷S ≔ {�̲̃�𝑗}
𝑗=1

𝑛S

of pre-selected regressors allows to incorporate user exper-

tise and construct arborescences, as explained in Section

III. Further applications are simplifying the variable selec-

tion algorithm presented in [32], which should be run as

dictionary sparsification step before the FOrLSR. It elimi-

nates unfit variables and upper-bounds the maximum lags

to limit the number of terms passed through the monomial

expansion and non-linearities, which strongly reduces the

dictionary size, resulting in faster regressions (see Section

IV-A). Imposing regressors is also necessary for the pro-

posed arborescence’s validation procedure (see Sections

III-A and III-B).

Regressors are imposed by [EDITED]

D. THE RECURSIVE FOrLSR ALGORITHM (rFOrLSR)

The (r)FOrLSR properly functions under following condi-

tions: Importantly, �̲� and all regressors in 𝐷C and 𝐷S must

be centered, such that matrix multiplications correspond to

correlations rather than cosine similarities. The input �̲�

must also be centered before being passed through the sys-

tem of interest. Further, �̲�𝑖 ≠ �̲�𝑗 , ∀𝑖 ≠ 𝑗 as the FOrLSR

often selects all equal regressors, once one of them is se-

lected. Finally, all regressor entries must be independent of

all model parameters: 𝜕𝜃𝑗
𝜑𝑖[𝑘] = 0, ∀𝑖,𝑗=1

𝑛𝑟 , ∀𝑘=1
𝑝

 [30].

The rFOrLSR’s inputs are: The system output �̲� ∈ ℝ𝑝, the

imposed and candidate regressor dictionaries, respectively

𝐷S ∈ ℝ𝑝×𝑛S and 𝐷C ∈ ℝ𝑝×𝑛C. Further, the index set 𝑈 de-

termines which regressors are accessible to the rFOrLSR,

which simplifies the arborescence, see Section III. Thus, for

the rFOrLSR |𝑈| =̂ 𝑛C and [�̲�𝑚]
𝑚∈𝑈

=̂ 𝐷C. As in the clas-

sical FOrLSR [30], 𝜌 is the maximum unexplained relative

output variance threshold. Higher thresholds lead to BVS

with fewer terms as more error is tolerated [30]. The integer

[MaxTerms] and the Boolean [Abort] allow the pruning

mechanism described in Section III-B. [MaxTerms] also

allows limiting expansions to a particular order (= model

length, number of terms) as is usual for expansion. Finally,

the Boolean [Solve] determines if the regression coeffi-

cients �̲̂� are to be estimated and the ordered index set 𝓛𝑰 is

needed for the arborescence’s OOIT-abortion described in

sections III-B and III-C.

The rFOrLSR operates with the same data structures as

the FOrLSR [30]: 𝑊 is an ordered set containing the or-

thogonal regressor’s regression coefficients, being static

once computed due to orthogonality. ℰ is an ordered set

containing each term’s Error Reduction Ratio (ERR), which

measures each term’s contribution to the regression’s ex-

plained empiric variance 𝑠�̲�
2 [30]. It corresponds to the

squared correlation between the orthogonalized regressor

�̲�𝑗 and the system output �̲�, assuming both are zero-mean.

The upper unitriangular matrix 𝐴 contains the projection

coefficients of the non-orthogonal selected regressors �̲�𝑚

onto the selected and orthogonalized regressors �̲�𝑗.

ALGORITHM 1: The rFOrLSR algorithm

[EDITED] (pseudo code)

[EDITED] (explanations)

The (r)FOrLSR functions as a lossy sparsifying QR-like

equation solver, where 𝑀�̲� = �̲� → 𝑅�̲� = 𝑄𝑇�̲� becomes

(𝐷S ⫲ 𝐷C)�̲̂� = �̲� → 𝐴�̲̂� = Ψn
𝑇�̲� = 𝑊. It retains a selection

of 𝐷C’s columns to minimize 𝛹’s, 𝐴’s and �̲̂�’s dimensions

while keeping the mean squared error increase with respect

to �̲� minimal [30]. Equivalently, �̲̂� remains in ℝ𝑛C+𝑛S and

is sparse, having non-zero entries at indices in ℒ. 𝛹’s col-

umns span an orthogonal basis of a subspace of 𝐷S ⫲ 𝐷C,

where 𝑊 is the least squares optimal representation of �̲�.

III. THE ARBORESCENT ORTHOGONAL LEAST

SQUARES REGRESSION (AOrLSR)

The (r)FOrLSR is a greedy algorithm since at each iteration

the orthogonalized regressor the most similar to the system

output is added to the model [30]-[33]. Thus, the algorithm

takes the locally best choice, maximizing the increase in

explained output variance without considering the global

search space, which could contain shorter and/or lower

validation error BVSs [33]. A common problem is the se-

lection of a highly correlated but otherwise suboptimal first

term, often 𝑦[𝑘 − 1], resembling the most the output 𝑦[𝑘]

VOLUME XX, 2023

[31], [33], such that all following regressors are selected to

compensate for that error, yielding a suboptimal model.

This can, however, happen at any regression iteration [33].

Guo et al. [31] propose the iFOrLSR, performing a first

regression and starting a new regression with each selected

regressor. This mitigates greediness by forcing the FOrLSR

to start in different search space locations to potentially find

better BVS [31]. Traversing the entire search space would

require 𝒪(𝑛C!) regressions and thus the greedy similarity-

metric-based selection remains necessary [31]. Equivalent-

ly, finding an arbitrarily determined linear equation sys-

tem’s sparsest solution vector is considered NP-hard [34].

Guo et al. [31] visualize the iFOrLSR as a search tree

having regressors as nodes and edges connecting two suc-

cessively added terms to the BVS. They note the potential

usefulness of retriggering regressions imposing more terms,

which, however, becomes quickly computationally intrac-

table and they provide no method for doing so. Both points

are addressed below.

A. THE ARBORESCENCE CONSTRUCTION

This section generalizes the iFOrLSR’s [31] arborescence

traversal mitigating greediness and increasing the solution

space exploration. Imposing regressors from later in the

BVS while dropping earlier ones allows the arborescence to

eliminate regressors at every level and replace them with

new ones. Thus, deeper arborescences have higher proba-

bility of finding better BVSs (models). The AOrLSR ex-

plores more search space than an equivalent forward-

backward regression (as in [33]), as it explores new combi-

nations rather than just eliminating poor regressors from the

current BVS.

[EDITED]

Once all nodes are processed, the shortest (for sparsity)

BVSs are compared with user-defined metrics on a valida-

tion set of input sequences . The validation procedure, tak-

ing an arbitrary data-structure as input, outputs a scalar

fitness measure, which the AOrLSR uses to select the best

performing BVS. This allows use-case specific metrics to

process arbitrary data-structures (see Section III-C).

B. THE SPARSIFICATION THEOREMS

Spanning a deep arborescence is computationally intracta-

ble due to the regression numbers’ combinatorial growth

(see Section IV-B). This section provides an observation

yielding four sparsification theorems, four corollaries, one

pruning mechanism and upper-bounds guaranteeing the

algorithm’s termination.

The sparsification theorems avoid computing nodes (re-

gressions) whose results are predictable (LUT, OOIT, (gen-

eralized) PFCT) or predictably rejected by the validation

method (ADTT and PM), which greatly sparsifies the arbo-

rescence without losing potential solution BVS.

Observation: [EDITED]

Predictable Free Choice Theorem (PFCT):

[EDITED]

Proof: [EDITED]

Leaf Uniqueness Theorem (LUT):

[EDITED]

Proof: [EDITED]

Orthogonalization Order Independence Theorem

(OOIT): [EDITED]

Proof: [EDITED]

Despite the chosen vectors �̲�𝑖 remaining identical, the or-

thogonalized vectors �̲�𝑖 and the QR-like decomposition’s

upper unitriangular matrix 𝐴 change depending on vector

ordering. The order being irrelevant, so is the sorting crite-

rion, if consistent throughout the AOrLSR.

Corollary (Generalized OOIT):

[EDITED]

Example: [EDITED]

Corollary (Generalized PFCT):

[EDITED]

The Generalized PFCT reduces the arborescence’s compu-

tational growth from permutational to combinatorial, which

is a factorial order smaller.

[EDITED]

Unique Regressions Upper-bound Theorem:

[EDITED]

Proof: [EDITED]

Figure 1: [EDITED]

Arborescence depth truncation theorem (ADTT):

[EDITED]

Proof: [EDITED]

Corollary (Arborescence depth upper bound):

[EDITED]

Proof: [EDITED]

Corollary (Guaranteed Termination):

[EDITED]

Proof: [EDITED]

Pruning mechanism (PM): [EDITED]

C. THE AOrLSR ALGORITHM

The AOrLSR algorithm’s inputs are the following: The

data-structures �̲�, 𝐷S and 𝐷C are the same as for the

rFOrLSR. The zero-based [MaxDepth] determines the arbo-

VOLUME XX, 2023

rescence depth (total number of levels). 𝜌1 is the root re-

gression’s ERR threshold, which, as described in [31], can

be set higher than the desired model precision threshold 𝜌2

to span a horizontally larger arborescence by having a long-

er root BVS. Note that Guo et al. [31] use 𝜌2 as offset for

𝜌1, while here those are separate thresholds for simplicity.

ℱ and 𝒱 correspond respectively to the validation function

and data, which are application and implementation de-

pendent (see explanations of step 7 below).

[EDITED]

ALGORITHM 2: The AOrLSR algorithm

[EDITED] (pseudo-code)

[EDITED] (explanations)

The last step (7) performs validation and model selection

once the arborescence is traversed and returns the regres-

sion of the minimum length BVS with the highest valida-

tion score. The validation score is application dependent

and should test important model characteristics. To illus-

trate, the validation could, additionally to the ERR, operate

in the frequency domain and also penalize models based on

their computational expense. The validation can also reject

models based on arbitrary criteria like using negative or too

large regression coefficients.

From the sparsifying linear equation system solver per-

spective, the AOrLSR imposes |ℒ𝐼| non-zero entries in the

solution vector and continues the iterative solving to find

sparser solutions, while all theorems apply equally.

D. SUPPLEMENTARY REMARKS

The early abortion functionality, being offered by the

rFOrLSR to support the AOrLSR’s pruning mechanism,

allows to set a maximum number of non-zero terms in the

solution vector in a LESS context. By setting 𝜌 = 0, the

rFOrLSR runs until [MaxDepth] ≤ 𝑛C is reached. The

rFOrLSR-based LESS can thus be used either with an error

threshold or with a determined number of non-zero entries.

The arborescence traversal can be performed by a depth-

first search (DFS), which seems attractive as from one node

to its child or sibling only one imposed term must be

changed, avoiding many computations. However, the

rFOrLSR cannot be used since un-orthogonalizing the dic-

tionary (𝐷C/Ω) w.r.t. a regressor is impossible and would

require storing copies quickly overflowing RAM. This also

trades imposing terms once at regression start, the cheapest

operation, against re-orthogonalizing 𝐷C at every iteration,

being the most expensive operation.

The AOrLSR is a meta-algorithm triggering the

(r)FOrLSR, which does not prevent the use of variations,

such as for example the Ultra-orthogonal FOrLSR [35] or

an information criterion-based FOrLSR [36], [37]. Differ-

ent similarity metrics and data augmentation remain com-

patible with the (r)FOrLSR with some adjustments.

IV. EXAMPLES

Section IV-A and IV-B illustrate the speed improvement

brought by the rFOrLSR and the sparsification theorems

and corollaries. Section IV-C illustrates the ability to create

nested expansions and Section IV-D displays both algo-

rithms use as Linear Equation System Solver.

For Sections IV-B and IV-C, the results slightly differ de-

pending on the white noise input sequence �̲�, thus the most

representative of multiple runs was taken.

A. EXECUTION SPEED

This example compares the rFOrLSR to a modified

FOrLSR implementation having a similar structure and

storing the same variables for a fair comparison. The fitted

system and dictionary content are irrelevant, the execution

speed per regressor being independent of the vectors’ con-

tent. Table I (CPU benchmark) and Table II (GPU bench-

mark) illustrate the fitting durations for 𝑝 ≔ 2′000 in sec-

onds averaged over 50 passes, w.r.t. dictionary size 𝑛C and

number of regressors (BVS length) 𝑛r. The rows compare

the rFOrLSR’s (top numbers) linear complexity in 𝑛r to the

FOrLSR quadratic complexity.

TABLE 1: rFOrLSR (top) and FOrLSR (bottom) fitting durations in sec-
onds w.r.t. dictionary size 𝒏𝑪 and BVS length (number of fitted regres-

sors) 𝒏𝒓 for vector length 𝒑 ≔ 𝟐′𝟎𝟎𝟎 on CPU. The rFOrLSR takes a
fraction of the FOrLSR fitting times in all cases.

Table 1 𝑛𝑐 = 100 𝑛𝑐 = 1𝑘 𝑛𝑐 = 10𝑘 𝑛𝑐 = 100𝑘

𝑛𝑟 = 5 0.009

0.047

0.072

0.433

0.752

3.909

9.328

38.567

𝑛𝑟 = 10 0.019

0.162

0.155

1.390

1.594

13.249

19.488

131.789

𝑛𝑟 = 20 0.038

0.518

0.316

5.351

3.306

52.879

39.881

515.110

𝑛𝑟 = 30 0.055

1.080

0.500

11.754

4.948

111.357

60.834

1085.402

𝑛𝑟 = 40 0.067

1.738

0.669

19.489

6.592

188.725

80.615

1872.121

TABLE 2: Same as Table 2 but benchmarked on GPU.

Table 2 𝑛𝑐 = 100 𝑛𝑐 = 1𝑘 𝑛𝑐 = 10𝑘 𝑛𝑐 = 100𝑘

𝑛𝑟 = 5 0.005
0.190

0.018
1.871

0.037
19.574

0.452
200.086

𝑛𝑟 = 10 0.011

0.693

0.039

5.729

0.078

59.242

0.935

595.988

𝑛𝑟 = 20 0.023
2.001

0.077
20.254

0.154
195.572

1.902
1930.037

𝑛𝑟 = 30 0.033

3.431

0.119

39.639

0.228

407.852

2.876

4067.117

𝑛𝑟 = 40 0.038
5.155

0.158
67.707

0.298
699.954

3.851
6886.958

The above processing times are based on the paper’s refer-

ence implementation, being uncompiled single-thread py-

thon using PyTorch, which should be considered as approx-

imate upper bound compared to pre-compiled, multi-

threaded or distributed implementations. The used comput-

er has an AMD Ryzen 8-Core CPU with 3.3GHz/4.3GHz

Turbo and an NVIDIA RTX 3080 (Laptop) GPU.

Table 1 and 2 display the rFOrLSR outperforming the

FOrLSR on CPU and GPU for all 𝑛C and 𝑛r. This is mainly

due to the linear (rFOrLSR) vs quadratic complexity in 𝑛r

VOLUME XX, 2023

but also the increased CPU and GPU optimizations which

can be performed on larger memory-contiguous data-

structures (better caching, SIMD, GPU-parallelization, etc).

The FOrLSR performs better on CPU, the algorithm com-

prising many scalar or small vector operations, which are

slow on GPU. The rFOrLSR, however, performs much

better on GPU due to the large matrix operations.

B. SPARSIFICATION

The following examples illustrate the sparsification per-

formed by Section IV-B’s theorems, corollaries and the

pruning mechanism. “Naïve” stands for the total number of

nodes in the arborescence per level, all of which require

evaluation without the theorems. “LUT” represents nodes

requiring computation applying only LUT (a), and

“GPFCT” applies the OOIT-generalized PFCT corollary of

which LUT is a special case. “Aborted” counts the nodes

whose computation is exited due to the OOIT-prediction

performed during the regression. “Ortho%” counts the

percentage of orthogonalizations necessary to traverse the

arborescence with the theorems compared to a naïve tra-

versal. This is representative of the general computation

expense reduction, orthogonalizations being by several

orders of magnitude the most expensive operation. All

mentioned numbers are cumulative sums, being the statis-

tics for the entire arborescence up to each level. “PM”

counts the aborted regressions if the respective levels were

the final one. “MinLen” represents the shortest known BVS

after traversing that level.

Only the last level takes into consideration the orthogo-

nalizations prevented by the leaf-pruning mechanism PM in

“Ortho%”. Thus, arborescences terminated at higher levels

will have slightly lower “Ortho%” numbers than indicated.

The following examples represent both extremes in

(r)FOrLSR fitting difficulty and the repercussions on the

arborescence’s usefulness and sparsity. Furthermore, sys-

tem 1 and 2 were chosen to be severely non-linear systems

to illustrate the expression complexity the (r)FOrLSR and

AOrLSR are capable of correctly retrieving.

The ERR tolerances are set to 𝜌1 ≔ 𝜌2 ≔ 1e − 4, such that

0.01% of the signal �̲�’s empiric variance can be left unex-

plained by the model for 𝑝 ≔ 2′000.

Let system 1 be:

𝑦[𝑘] ≔ 0.2𝑥[𝑘] + 0.3𝑥3[𝑘 − 1] + 0.7|𝑥[𝑘 − 2]𝑥2[𝑘 − 1]|

 + 0.5𝑒𝑥[𝑘−3]𝑥[𝑘−2] − 0.5 cos(𝑦[𝑘 − 1]𝑥[𝑘 − 2])
 − 0.4|𝑥[𝑘 − 1]𝑦2[𝑘 − 2]| − 0.4𝑦3[𝑘 − 3]

The required dictionary is:

 𝐷C ≔ {𝑓𝑖 (∏ 𝜑
𝑗

𝑎𝑗11
𝑗=0) |𝑎𝑗 ∈ {𝑞}𝑞=0

3 , |∑ 𝑎𝑗
11
𝑗=1 | ≤ 3, ∀𝑗} (4)

with 𝜑𝑗 ∈ {𝑥[𝑘 − 𝑗]}𝑗=0
5 ∪ {𝑦[𝑘 − 𝑗]}𝑗=1

5 in addition to 𝑓𝑖 ∈

{𝑥, |𝑥|, 𝑒𝑥, cos(𝑥)}. Thus, 𝐷C contains delays up to 5

timesteps for third-order monomial expansions of 𝑥, 𝑦

passed through the above functions, such that |𝐷C| ≜ 𝑛C =

1441.

TABLE 3: Arborescence sparsification demonstration per level 𝑳 (col-

umns) via the total nodes, the remaining nodes after applying respec-
tively LUT, then OOIT-augmented PFCT. Below are the number of OOIT
aborted regressions, the number of regressions aborted by the pruning
mechanism and the relative number of orthogonalizations. The last row
contains the shortest known sequence length after that level.

Table 3 L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7

Naïve 1 8 50 276 1’326 5’396 18’348 51’668

LUT 1 7 42 226 1’050 4’070 12’952 33’320

GPFCT 1 7 22 50 104 196 305 386

Aborted 0 5 18 43 89 159 246 306

PM 0 0 2 10 40 86 108 81

Ortho% 100 55.55 20.37 6.80 2.62 1.08 0.43 0.21

MinLen 7 7 7 7 7 7 7 7

For most input sequences, System 1 is correctly retrieved

by the FOrLSR on its own (= root), thus, the minimum

length (MinLen) remains constant. Thus, further arbores-

cence levels are strongly redundant, as recognized by

“GPFCT”, which together prevent computing most nodes.

Using all proposed theorems, the arborescence is traversed

by computing only
386

51668
≈ 0.47% of all nodes before exit-

ing the search due to ADTT. Additionally,
306

386
≈ 79.3%

were OOIT-aborted and the pruning mechanism aborted 81

regressions, meaning that the arborescence was traversed

with about 0.21% of the naïve computations. The

rFOrLSR’s further reduces computations to about
0.039

1.39
⋅

100 ≈ 2.8% (GPU rFOrLSR / CPU FOrLSR from Table

1&2 respectively at 𝑛𝑟 = 10, 𝑛C = 1𝑘), yielding a total

computation time of roughly 5.88e-3% of the CPU (best

time for the FOrLSR) FOrLSR-based naïve arborescence.

Let system 2 be rational: 𝑦[𝑘] ≔
𝑁

𝐷
 with

𝑁 ≔ 0.6|𝑥[𝑘]| − 0.35𝑥3[𝑘] − 0.3𝑥[𝑘 − 1]𝑦[𝑘 − 2]
+0.1|𝑦[𝑘 − 1]|

𝐷 ≔ 1 − 0.4|𝑥[𝑘]| + 0.3|𝑥[𝑘 − 1]𝑥[𝑘]| − 0.2𝑥3[𝑘 − 1]
 + 0.3𝑦[𝑘 − 1]𝑥[𝑘 − 2]

The required dictionary is:

 𝐷C ≔ {𝑓𝑖 (∏ 𝜑
𝑗

𝑎𝑗11
𝑗=0) |𝑎𝑗 ∈ {𝑞}𝑞=0

3 , |∑ 𝑎𝑗
11
𝑗=1 | ≤ 3, ∀𝑗}

with 𝜑𝑗 as above, with however 𝑓𝑖 ∈ {𝑥, |𝑥|, −𝑦𝑥, −𝑦|𝑥|},

as the denominator terms are created by multiplying the

regressors with −𝑦 to linearize the expression [38]:

𝑦[𝑘] =
𝐴

1+𝐵
⟺ 𝑦[𝑘](1 + 𝐵) = 𝐴 ⟺ 𝑦[𝑘] = 𝐴 − 𝑦[𝑘]𝐵

where 𝐴 and 𝐵 are arbitrary linear combinations.

VOLUME XX, 2023

TABLE 4: Same content as Table 3 with System 2’s data

Table 4 L=0 L=1 L=2 L=3 L=4 L=5 L=6

Naïve 1 23 482 9’785 192’022 3.65M 67.77M

LUT 1 22 459 9’303 182’237 3.46M 64.12M

GPFCT 1 22 312 3’786 41’719 428’159 4.09M

Aborted 0 9 167 2’279 27’448 298’785 2.97M

PM 0 12 285 3’463 37’901 386’429 3.67M

Ortho% 100 67.23 37.02 19.13 9.73 4.89 2.14

MinLen 22 15 10 9 8 8 8

FIGURE 2: Illustration of the arborescence convergence via the statisti-
cal properties of 150 different input random sequences �̲� for system 2.
The correct solution (blue line) has 8 regressors and the Max/Min, Mean,
standard deviation (Std) and range illustrate the initial poor (r)FOrLSR
performance progressively corrected by the arborescence.

System 2 is so complex that the (r)FOrLSR on its own (root

regression) performs very poorly as illustrated in the exam-

ple run (Table 4) and in general (Figure 2). Depending on

the used input noise sequence, the root’s BVS length is

between 14 and 49 (instead of 8) and the arborescence must

arrive at L=3-5 to retrieve the correct equation.

System 2’s arborescence levels yield progressively short-

er BVSs until the correct expression is retrieved, illustrating

the gain of spanning large search spaces. Furthermore, for

complex systems, the (r)FOrLSR results dependent strongly

on the input sequence, which the AOrLSR stabilizes by

design as illustrated in Figure 2, where the range and stand-

ard deviation greatly decrease at each level. Only 18.67%

of the 150 runs find the correct solution by level 3, 72% by

level 4 and all by level 5.

The arborescence traversal in Table 4 requires computing

2.14% of all orthogonalizations and the pruning mecha-

nism aborted
3.67M

4.09
≈ 89.73% of all nodes. The rFOrLSR

reduces the remaining computations to a about
0.119

11.754
⋅

100 ≈ 1%, (Table 1&2 respectively at 𝑛𝑟 = 30, 𝑛C = 1𝑘)

yielding a total computation time of roughly 0.021% of the

CPU FOrLSR-based naïve arborescence.

The number of levels decreasing the BVS length depends

on the fitted system and the input sequence. Empirically,

for difficult to fit systems, BVS lengths decrease in the first

2-6 levels with mostly the largest decrease after the root.

Some systems lose most of their regressors, while others

lose almost none. For easily fitted systems such as system

1, the arborescence has few nodes and is very sparse which

minimizes its cost. Indeed, for linear systems such as FIRs

or IIRs, the total number of nodes is often a few hundreds.

The deeper the arborescence level, the lower the percentage

of computed nodes and the higher the abortion rate.

Importantly, two or three consecutive levels can yield

identical shortest known BVS lengths while being followed

by a level yielding a shorter one. Thus, stopping the arbo-

rescence after a level fails to find a shorter BVS is a sub-

optimal stopping criterion.

Even if no shorter BVS is discovered, further levels re-

main of interest as they often provide supplementary same

length candidate BVSs for the validation procedure to

choose from, to decrease the user-defined error metric.

C. ADVANCED EXPANSIONS / SYMBOLIC FITTING

As demonstrated by system 2, the requirement that the

NARMAX expansions sparsely fitted by the AOrLSR be

linear-in-the-parameter is quite loose. The (r)FOrLSR’s

advantage over other methods is that, being based on vector

similarity metrics, the vectors’ content is not subject to

common fitting constraints such as differentiability, conti-

nuity or system causality.

This example illustrates an expansion in |𝑥|𝑗 inside a ra-

tional non-linear expression designed to emulate tanh(𝑥)

for 𝑥 ∈ ℝ. The constraints are that the approximation be a

single expression, converge to ±1 and have a small maxi-

mum error around the origin, which are hard to achieve

with Padé expansions or rational systems such as system 2.

The proposed approximation has the form:

𝑦 = sgn(𝑥) (1 −
1

1 + |𝑥|𝐴
)

with 𝐴 ≔ ∑ 𝜃𝑗|𝑥|𝑗
𝑗∈𝐽 and 𝐽 ⊂ ℕ0, which linearizes to

−sgn(𝑥)𝑦 + 1 = (sgn(𝑥)𝑦 − 1)|𝑥|𝐴

Yielding

𝐷C ≔ {(sgn(𝑥)𝑦 − 1)|𝑥|𝑗| 𝑗 ∈ ℕ∗}

This example’s input sequence �̲� is a zero-mean uniform

noise of length 𝑝 ≔ 15′000, with powers in 𝐽 ≔ {𝑖}𝑖=1
15 ,

yielding a dictionary of 15 terms. The optimal noise ampli-

tude was determined by a grid search in [2,4] for each ex-

pansion order. The AOrLSR’s validation function was an

𝐿∞ norm on the equidistantly sampled interval of [−8,8], to

keep the shortest BVS with the smallest maximal deviation.

VOLUME XX, 2023

The fitting errors of the respectively 5, 6 and 7 term sig-

moid expansions are illustrated in Figure 3 below, while the

coefficients and input noise amplitudes are provided in

Appendix 3.

FIGURE 3: The presented rational NARMAX expansion’s fitting error
(tanh(x) – 5-7 order expansions) per order (number of terms in the
powers of absolute values in A) with tuples containing the respective
maximal deviation coordinates of the two tallest peaks.

A depth 3 arborescence finds the optimal BVSs for all three

expansion orders. Its traversal is sparser than computing

each possible regressor combination of which there are 𝑛𝐶𝑘

(with 𝑛𝐶𝑘 the combinatorial “from n choose k” operator).

Although level 1 and 2 suffice to find a minimum length

BVS, the additional level finds lower error BVS.

For the 5th order expansion, only 80 regressions of

15𝐶5 = 3003 (2.66%) are computed of which 36 (45%)

are early aborted. For the 6th order expansion, 100/5005 ≈
1.99% of all regressions are computed of which 60 (60%)

are early aborted. For the 7th order expansion, 120/6435 ≈
1.86% of all regressions are computed, of which 82

(68.3%) are early aborted.

D. SPARSIFYING LINEAR EQUATION SYSTEM SOLVER

As mentioned in sections II and II-D, the (r)FOrLSR and

the AOrLSR are, on an abstract level, linear equation sys-

tem solvers, maximizing the solution-vector sparsity by

choosing the most relevant LHS columns, while minimiz-

ing the mean squared error with respect to the RHS �̲� [30].

The LHS is 𝑀 ≔ 𝐷S ⫲ 𝐷C, where 𝐷S allows to impose

columns to the selection. 𝑀’s dimensions being arbitrary,

the system can be under-, well- or over-determined.

To illustrate, be the following system with 𝑝 ∈ ℕ∗:

𝑀�̲� = �̲� ⟺
Δ

[

𝑚1,1 ⋯ 𝑚1,5

⋮ ⋱ ⋮
𝑚𝑝,1 ⋯ 𝑚𝑝,5

] [

𝑥1

⋮
𝑥5

] = [

𝑦1

⋮
𝑦𝑝

]

The AOrLSR with a 1% error tolerance could yield ℒ =

{1,3} and �̲̂� ∈ ℝ|ℒ|=2, such that �̲� = [�̂�1, 0, �̂�2, 0, 0]
𝑇
, while

a 0.1% tolerance could yield ℒ = {1,3,4} and �̲̂� ∈ ℝ|ℒ|=3,

thus �̲� = [�̂�1, 0, �̂�2, �̂�3, 0]
𝑇
.

The LES is thus reduced to [�̲�𝑗]
𝑗∈ℒ

�̲̂� = �̲�, with 𝛹 and 𝐴

matching dimension orthogonal, and unitriangular matrices,

as in a QR decomposition [30].

V. CONCLUSION

This paper proposes the rFOrLSR (recursive forward or-

thogonal least squares regression), being a recursive matrix

form of the FOrLSR [30], and the AOrLSR (arborescent

orthogonal least squares regression), being a meta-

algorithm triggering the (r)FOrLSR to reduce the number of

regressors used to describe the desired system.

[EDITED]

The rFOrLSR and the sparsification theorems allow span-

ning an otherwise computationally intractable arborescence

which scans a much larger search space segment than the

FOrLSR. This greatly increases the probability of finding

the optimal (sparser, lower error or more complex)

NARMAX expansion within the given dictionary.

Thus, this paper lays the groundwork for future arbores-

cent (r)FOrLSR algorithms using further sparsification

heuristics (search-tree branch pruning methods, regressor

elimination based on MSE contribution, etc).

The (r)FOrLSR / AOrLSR are also linear equation system

solvers for arbitrarily determined systems which maximize

solution sparsity and minimize mean square error.

The first authors’ GPU-accelerated python AOrLSR li-

brary is available at https://github.com/Stee-T/rFOrLSR.

Future research could go towards further sparsification

theorems and heuristics and transforming current regressor

selection and elimination procedures into arborescence

pruning heuristics. Further, regularization methods keeping

the solution vector entries small or imposing constraints

like coefficient positivity could allow using the AOrLSR

for problems requiring specific sparsifying linear solvers.

Finally, the rich literature on external parameter support,

such as [9], [39], [40], would allow modulating the expan-

sion’s parameters �̲̂� to model system changes.

Further, the orthogonalization matrix 𝑃A will be used in

the authors’ upcoming work to morph regressors to adapt to

the current system via infinitesimal optimization.

AKNOWLEDGMENT

The first author thanks Paolo Combes for his thorough

proof-reading and feedback.

REFERENCES
[1] R. J. Boynton, M. A. Balikhin, S. A. Billings, H. L. Wei, and N.

Ganushkina, "Using the NARMAX OLS-ERR algorithm to obtain

the most influential coupling functions that affect the evolution of

the magnetosphere," J. Geophys. Res., vol. 116, no. A05218, 2011.

DOI: 10.1029/2010JA015505.

[2] R. Boynton, M. Balikhin, H.-L. Wei, Z.-Q. Lang, "Chapter 8 -

Applications of NARMAX in Space Weather," in Machine

Learning Techniques for Space Weather, E. Camporeale, S. Wing,

https://github.com/Stee-T/rFOrLSR

VOLUME XX, 2023

J. R. Johnson, Eds., Elsevier, 2018, pp. 203-236. DOI:

10.1016/B978-0-12-811788-0.00008-1.

[3] M. A. Balikhin et al., “Using the NARMAX approach to model the

evolution of energetic electrons fluxes at geostationary orbit,”

Geophysical Research Letters, vol. 38, no. 18, 2011.

doi:10.1029/2011gl048980

[4] F. He and Y. Yang, “Nonlinear system identification of neural

systems from neurophysiological signals,” Neuroscience, vol. 458,

pp. 213–228, 2021. doi:10.1016/j.neuroscience.2020.12.001

[5] D. Florescu and D. Coca, “Identification of linear and nonlinear

sensory processing circuits from spiking neuron data,” Neural

Computation, vol. 30, no. 3, pp. 670–707, 2018.

doi:10.1162/neco_a_01051

[6] R. Tian, Y. Yang, F. C. van der Helm, and J. P. Dewald, “A novel

approach for modeling neural responses to joint perturbations using

the NARMAX method and a hierarchical neural network,”

Frontiers in Computational Neuroscience, vol. 12, 2018.

doi:10.3389/fncom.2018.00096

[7] Y. Gu et al., “Nonlinear modeling of cortical responses to

mechanical wrist perturbations using the NARMAX method,” IEEE

Transactions on Biomedical Engineering, vol. 68, no. 3, pp. 948–

958, 2021. doi:10.1109/tbme.2020.3013545

[8] F. He et al., “Nonlinear interactions in the Thalamocortical Loop in

essential tremor: A model-based frequency domain analysis,”

Neuroscience, vol. 324, pp. 377–389, 2016.

doi:10.1016/j.neuroscience.2016.03.028

[9] Y. Li, H.-L. Wei, Stephen. A. Billings, and P. G. Sarrigiannis,

“Identification of nonlinear time-varying systems using an online

sliding-window and common model structure selection (CMSS)

approach with applications to EEG,” International Journal of

Systems Science, vol. 47, no. 11, pp. 2671–2681, 2015.

doi:10.1080/00207721.2015.1014448

[10] G. Zito and I. D. Landau, “A methodology for identification of

NARMAX models applied to diesel engines,” IFAC Proceedings

Volumes, vol. 38, no. 1, pp. 374–379, 2005. doi:10.3182/20050703-

6-cz-1902.00063

[11] Y. Cao, Z. Wang, S. Hu, and W. Wang, “Modeling of weld

penetration control system in GMAW-P using NARMAX

methods,” Journal of Manufacturing Processes, vol. 65, pp. 512–

524, 2021. doi:10.1016/j.jmapro.2021.03.039

[12] Z. Deng, Q. Chen, L. Zhang, and Z. Fu, “DATA DRIVEN

NARMAX modeling for PEMFC Air Compressor,” International

Journal of Hydrogen Energy, vol. 45, no. 39, pp. 20321–20328,

2020. doi:10.1016/j.ijhydene.2019.11.228

[13] D. J. Pagano, V. D. Filho, and A. Plucenio, “Identification of

polinomial NARMAX models for an oil well operating by

continuous gas-lift,” IFAC Proceedings Volumes, vol. 39, no. 2, pp.

1113–1118, 2006. doi:10.3182/20060402-4-br-2902.01113

[14] E. Perracchione, “Rational RBF-based partition of unity method for

efficiently and accurately approximating 3D objects,”

Computational and Applied Mathematics, vol. 37, no. 4, pp. 4633–

4648, 2018. doi:10.1007/s40314-018-0592-8

[15] K. Krishnanathan, S. R. Anderson, S. A. Billings, and V.

Kadirkamanathan, “A data-driven framework for identifying

nonlinear dynamic models of genetic parts,” ACS Synthetic Biology,

vol. 1, no. 8, pp. 375–384, 2012. doi:10.1021/sb300009t

[16] A. M. Marshall et al., “Quantifying heterogeneous responses of fish

community size structure using novel Combined Statistical

Techniques,” Global Change Biology, vol. 22, no. 5, pp. 1755–

1768, 2016. doi:10.1111/gcb.13190

[17] S. L. Kukreja, H. L. Galiana, and R. E. Kearney, “Narmax

representation and identification of ankle dynamics,” IEEE

Transactions on Biomedical Engineering, vol. 50, no. 1, pp. 70–81,

2003. doi:10.1109/tbme.2002.803507

[18] J. Bernat, J. Kołota, and P. Superczyńska, “NARMAX approach for

the identification of a dielectric electroactive polymer actuator,”

International Journal of Control, Automation and Systems, vol. 21,

no. 9, pp. 3080–3090, 2023. doi:10.1007/s12555-022-0518-5

[19] G. Triantos and A. T. Shenton, “Narmax structure selection for

Powertrain Control,” IFAC Proceedings Volumes, vol. 37, no. 22,

pp. 279–285, 2004. doi:10.1016/s1474-6670(17)30357-9

[20] J. S.-H. Tsai et al., “A NARMAX model-based state-space self-

tuning control for Nonlinear Stochastic Hybrid Systems,” Applied

Mathematical Modelling, vol. 34, no. 10, pp. 3030–3054, 2010.

doi:10.1016/j.apm.2010.01.011

[21] L. Aggoun and Y. Chetouani, “Fault detection strategy combining

NARMAX model and Bhattacharyya distance for process

monitoring,” Journal of the Franklin Institute, vol. 358, no. 3, pp.

2212–2228, 2021. doi:10.1016/j.jfranklin.2021.01.001

[22] H. Huang et al., “Study of cumulative fatigue damage detection for

used parts with nonlinear output frequency response functions based

on Narmax modelling,” Journal of Sound and Vibration, vol. 411,

pp. 75–87, 2017. doi:10.1016/j.jsv.2017.08.023

[23] Z. K. Peng, Z. Q. Lang, C. Wolters, S. A. Billings, and K. Worden,

“Feasibility Study of structural damage detection using NARMAX

modelling and nonlinear output frequency response function based

analysis,” Mechanical Systems and Signal Processing, vol. 25, no.

3, pp. 1045–1061, 2011. doi:10.1016/j.ymssp.2010.09.014

[24] A. J. Wootton, J. B. Butcher, T. Kyriacou, C. R. Day, and P. W.

Haycock, “Structural Health Monitoring of a footbridge using Echo

State Networks and NARMAX,” Engineering Applications of

Artificial Intelligence, vol. 64, pp. 152–163, 2017.

doi:10.1016/j.engappai.2017.05.014

[25] Z. Wei, L. H. Yam, and L. Cheng, “NARMAX model

representation and its application to damage detection for multi-

layer Composites,” Composite Structures, vol. 68, no. 1, pp. 109–

117, 2005. doi:10.1016/j.compstruct.2004.03.005

[26] C. McHugh, S. Coleman, and D. Kerr, “Hourly electricity price

forecasting with Narmax,” Machine Learning with Applications,

vol. 9, p. 100383, 2022. doi:10.1016/j.mlwa.2022.100383

[27] O. Akanyeti, I. Rañó, U. Nehmzow, and S. A. Billings, “An

application of Lyapunov stability analysis to improve the

performance of Narmax models,” Robotics and Autonomous

Systems, vol. 58, no. 3, pp. 229–238, 2010.

doi:10.1016/j.robot.2009.11.001

[28] I. M. Yassin et al., “Binary particle swarm optimization structure

selection of nonlinear autoregressive moving average with

exogenous inputs (NARMAX) model of a flexible robot arm,”

International Journal on Advanced Science, Engineering and

Information Technology, vol. 6, no. 5, p. 630, 2016.

doi:10.18517/ijaseit.6.5.919

[29] P. Han, S. Zhou, and D. Wang, “A multi-objective genetic

programming/ NARMAX approach to chaotic systems

identification,” 2006 6th World Congress on Intelligent Control and

Automation, pp. 1735–1739, Oct. 2006.

doi:10.1109/wcica.2006.1712650

[30] S. A. Billings, “Model Structure Detection And Parameter

Estimation”, Nonlinear System Identification: NARMAX Methods in

the Time, Frequency, and Spatio-Temporal Domains. s.l.:John

Wiley & Sons, Ltd.. 2013, pp. 64-84.

[31] Y. Guo, L. Z. Guo, S. A. Billings, and H.-L. Wei, “An iterative

orthogonal forward regression algorithm,” International Journal of

Systems Science, vol. 46, no. 5, pp. 776–789, 2014.

doi:10.1080/00207721.2014.981237

[32] H. L. Wei, S. A. Billings, and J. Liu, “Term and variable selection

for non-linear system identification,” International Journal of

Control, vol. 77, no. 1, pp. 86–110, 2004.

doi:10.1080/00207170310001639640

[33] L. Piroddi and W. Spinelli, “A pruning method for the identification

of polynomial NARMAX models,” IFAC Proceedings Volumes,

vol. 36, no. 16, pp. 1071–1076, 2003. doi:10.1016/s1474-

6670(17)34901-7

VOLUME XX, 2023

[34] S. Jokar and M. E. Pfetsch, “Exact and approximate sparse solutions

of underdetermined linear equations,” SIAM Journal on Scientific

Computing, vol. 31, no. 1, pp. 23–44, 2008. doi:10.1137/070686676

[35] Y. Guo, L. Z. Guo, S. A. Billings, and H.-L. Wei, “Ultra-orthogonal

forward regression algorithms for the identification of Non-Linear

Dynamic Systems,” Neurocomputing, vol. 173, pp. 715–723, 2016.

doi:10.1016/j.neucom.2015.08.022

[36] H.-L. Wei , S. A. Billings, “Sparse Model Identification Using a

Forward Orthogonal Regression Algorithm Aided by Mutual

Information”. IEEE Transactions on Neural Networks, 18(1), pp.

306 - 310, 2007, DOI: 10.1109/TNN.2006.886356.

[37] [1] H. L. Wei and S. A. Billings, “Model structure selection using

an integrated forward orthogonal search algorithm assisted by

squared correlation and mutual information,” International Journal

of Modelling, Identification and Control, vol. 3, no. 4, p. 341, 2008.

doi:10.1504/ijmic.2008.020543

[38] Q. M. Zhu, “An implicit least squares algorithm for nonlinear

rational model parameter estimation,” Applied Mathematical

Modelling, vol. 29, no. 7, pp. 673–689, 2005.

doi:10.1016/j.apm.2004.10.008

[39] Y. Gu and H.-L. Wei, “A robust model structure selection method

for small sample size and multiple datasets problems,” Information

Sciences, vol. 451–452, pp. 195–209, 2018.

doi:10.1016/j.ins.2018.04.007

[40] A. Kadochnikova, Y. Zhu, Z.-Q. Lang, and V. Kadirkamanathan,

“Integrated identification of the nonlinear autoregressive models

with exogenous inputs (NARX) for Engineering Systems Design,”

IEEE Transactions on Control Systems Technology, vol. 31, no. 1,

pp. 394–401, 2023. doi:10.1109/tcst.2022.3171130

APPENDIX 1

This appendix describes the notation used throughout the

paper. Vectors are denoted with underlined lower-case

letters (�̲�), matrices and sets with uppercase letters (𝐴) and

scalars with lower-case letters (𝑎). Set and tensor construc-

tors are {𝑎𝑗}
𝑗=1

𝑛
≔ {𝑎1, … , 𝑎𝑛}, [𝑎𝑗]

𝑗=1

𝑛
≔ [𝑎1, … , 𝑎𝑛] (row

vectors) and [�̲�𝑗]
𝑗=1

𝑛
(matrices). They also support index

sets: [�̲�𝑗]
𝑗∈𝑆

≜ [�̲�𝑠1
, . . . , �̲�𝑠|𝑆|

] with 𝑆 ≜ {𝑠𝑗}
𝑗=1

|𝑆|
 and |𝑆| the

set cardinality. Be further [𝑎𝑗]
𝑗=1

𝑛,↓
≔ ([𝑎𝑗]

𝑗=1

𝑛
)

𝑇

 a vertical

(↓) tensor constructor and the horizontal concatenation

operator ⫲. For disambiguation, elementwise or broadcast-

ed tensor arithmetic operation symbols are in a circle such

as �̲� ⊘ �̲� ≔ [𝑎𝑗/𝑏𝑗]
𝑗=1

dim(�̲�)=dim(�̲�),↓
, �̲� ⊘ 𝑏 ≔ [𝑎𝑗/𝑏]

𝑗=1

dim(�̲�),↓

and �̲�⦿𝑛 ≔ [𝑎𝑗
𝑛]

𝑗=1

dim(�̲�),↓
. Tensor slicing is denoted with

vector indexation such as 𝐴[[𝑗]𝑗=1
𝑠 , 𝑠] ≔ [𝑎𝑗,𝑠]

𝑗=1

𝑠,↓
. Matrix

columns are denoted by lower-casing the matrix name and

adding their index such as ω̲𝑗 ∈ Ω and �̲�S,𝑗 ∈ 𝐷S. Set union

and set differences are respectively denoted with A ∪ B and

A ∖ B.

APPENDIX 2

This appendix proves that Equation (2)’s recursive form

corresponds to the desired Gram-Schmidt orthogonalization

or equivalently to a multiplication by the proposed or-

thonormal annihilator matrix in Equation (1).

First, it must be proven that Ω(𝑠)’s columns always corre-

spond to those in [�̲�𝑚]
𝑚∈𝑈(𝑠) (A), and secondly that the

correct operations are performed (B).

Without loss of generality, this proof assumes 𝐷S = ∅.

𝐷S ≠ ∅ only changes the number of terms in the orthogo-

nalization sum and the number of columns in 𝛹 and 𝛹n.

Further, all indices (__(𝑠)) represent the data-structures’

state after respectively algorithm 1’s step 2.h) and 3.l).

�̲�𝑠 are always orthogonal w.r.t. all previous �̲� , even if not

directly taken from Ω.

A) [EDITED]

B) [EDITED]

APPENDIX 3

This appendix contains the respective expansions denomi-

nators, being the best results of multiple runs on different

input random sequences. The expansions have the property

that higher order terms have tendentially increasingly

smaller coefficients, which increases the numerical stability

around the origin.

The optimal input noise sequence �̲�’s amplitude deter-

mined by a grid search is respectively 2.36, 2.51, and 2.45

for the orders 5, 6, and 7.

[EDITED]

STÉPHANE J.P.S. THUNUS

received his B.S. in sound engineering

from SAE Institute, Glasgow, UK in

2017 with distinction. He received his

M.S. from the audio communication

group at the Technical University of

Berlin, Germany in 2022 also with

distinction. His research interests in-

clude digital signal processing, ma-

chine learning, linear algebra, and non-linear stochastic

processes.

JULIAN PARKER

Has been Parkering Julians since ever.

STEFAN WEINZIERL

Has been Weinzierling Stefans since ever.

